部分予混合拡散火炎の火炎構造*
（CARSによる温度および濃度分布の測定）

荒木信幸*1, 牧野 敦*1, 新田 豊*2

Nobuyuki ARAKI, Atsushi MAKINO, and Yutaka NITTA

Laser spectroscopic techniques offer a number of advantages over the physical probing methods
due to their remoteness and nondisturbance. Among these techniques, coherent anti-Stokes
Raman spectroscopy (CARS) has received considerable attention because of its strong signal
levels and coherence. In this study, CARS is applied as a method of measuring gas temperature
and species concentration in combustion fields, and the structure of the flames established in the
forward stagnation region of a porous cylindrical burner has been investigated. A simple evaluation
method for the concentration has been introduced. Practicability of CARS for combustion studies
has been examined and demonstrated, and compared with data of a thermocouple for the temperature
and those of gas chromatography for the concentration.

Key Words : Combustion, CARS, Laser, Temperature Measurement, Concentration Measurement

1. 引 言

燃焼研究に、特に火炎の消炎機構を調べるような場合には、消炎直前の火炎構造は非常に重要である。しかしながら、そのような安定な火炎は外乱を受けてやすく、熱電対などによる測定は、測定領域の流れ場を乱すという物理的な意味からも、触媒性という化学的な意味からも問題が多い。

CARS(Coherent Anti-Stokes Raman Spectroscopy)は最近注目されているレーザを用いた非接触測定法の一つであり、上記の問題を回避できるもののは、時間的にも空間的にも高い分解能が期待される。

CARSに関する研究は、20数年前からなされてきたが、一つの測定法としてはまだ一般に広く普及しているとはいえず、新しい研究の発展や、レーザ技術の進歩に伴って、し湯に実用的になってきつつある。

今回は、多孔質円筒パーカ前方よどみ領域に形成された火炎の温度分布、濃度分布について、CARSによ

2. CARSの原理

2-1 CARS 光の発生過程 CARSは、媒質中に特定の振動数をもつ2種類のレーザ光
ω1, ω2(ω2<ω1)を入射することにより新しくω0(=2ω1−ω2)のコ
ヒーレントな光束を発生する現象である。それは、発生過程を図1に示す。反ストークスラン散乱は、レーザ光
ω1の入射により実生エネルギー準位V1の分子が励起され、仮想準位V1を経た後、実生準位V1に達すると
いう過程で生ずる散乱で、通常は非常に微弱である。しかしながら、外部からω1の光とともにω2の光を入射する
と、光子の自己増殖性が促進され、クーロンレントな
反ストークスラン散乱(CARS光)が得られる。実際には、これ4光子の出入りに時間的なずれはなく、瞬時に起こるものとみなして差支えない。しかも、得られたCARS光は、その発生領域での温度や、対象成分の濃度などの情報を含んでいる。

2-2 温度測定 図1には分子の振動準位V1が
一つだけ示してあるが実際にはさらにいくつかの振動
励起準位および回転励起準位を持っている。低溫時に
は、分子は低い準位に数多く存在するが、高温になるにつれて、多くの分子に遷移する数の数が増加し、したがって散乱スペクトルは広がりを持つようになる。厳密な温度の評価には、スペクトル波形の温度依存性を考慮した計算を行い、それと測定波形をフィッティングすることにより行うべきである（誤差土1%）[13]。しかし、計算およびフィッティングに多大な時間を要するので、ここでは最も一般的な方法を用いた。それはスペクトル波形のピークの1/5の綾幅を比較して評価する方法[14]（図2）で、1400℃で誤差30℃程度で測定が可能である。なお今回の燃焼場では全域にわたって十分な窒素が存在していると予想されるので、温度測定に関する対象成分を窒素とし、

2-3 濃度測定 CARs光強度Iiと分子数密度N。入射レーザ光のエネルギー密度I。の関係には

\[I_i \propto N_i^2 I \] と \(I \) の関係がある[14]。したがって、濃度を評価するためには対象成分のスペクトル波形のピーク強度を比較する方法をとることが多い。しかしながら、CARs光の強度は光学系（レンズ、プリズムなどの位置や角度）の変化に対して非常に敏感であり、測定点を変化させるような場合には適用が困難である。そこで、今回は濃度測定の対象成分を酸素に限定し、次のような方法で濃度を評価した。

まず、火災のない状態で測定箇所において、空気の温度を計測しつつCARSスペクトルを得る（ピーク値：I）。次に火災を発生させて同じ位置で（光学系を全く変化させない）で火災中のCARSスペクトルを得る（ピーク値：I）。これらのスペクトルから前記の方法で温度を求める、その温度をそれぞれT、T[K]として、酸素中の酸素の分子数密度をN、酸素濃度をXとし、火災中についてはそれぞれN、Xとすると、

\[X = X_a(T_a/T) \cdot (N_a/N) \] と式(2)より

\[X_c = X_a(T_c/T_a) \cdot (I_c/I) \] として酸素濃度が得られる。ここでX_a=0.21とした。

3. 実験装置

光学系の配置を図3に示す。YAGレーザ（波長：532 nm）の一部は、柱状光を通過し、その強度を変換する（N2：607.3 nm、O2：580.0 nm）。YAGレーザ光とともに測定点を集光される。測定領域を通過した後の光は、ダイクロイックミラーによりYAGレーザおよび柱状光を除去されCARS光が分光器（512 ch）としに取り込まれる。

高い空間分解能を得るために、BOXCARS配置とし、BOXCARSは光学系の調整がやや複雑であり、火災の測定点には適当でないといわれており、MAC法などの方法も提案されているが[15]。今回の測定範囲（移動量10 mm程度）内においては十分対応できると考えた。

燃焼装置については、バーナに焼結金属円筒（直径20 mm、ブロンズ）を用い、下方から整流した空気を吹きつける。燃料にはメタンを用い、過濾混合気を吹き出して、前方および側方で形成される二重火炎を測定対象とした（図4）。

4. 測定結果および考察

4-1 他の測定法との比較 図5～7にCARSと

図1 CARS光の発生過程

図2 温度評価手法
φ：当量比
- \(f_a \)：無次元吹き出し速度
η：無次元距離

\[
- f_a = (v_a/V) \cdot (Re/2)^{1/4} \quad \cdots \cdots \cdots \cdots \cdots (4)
\]
\[
\eta = (Z/R) \cdot (2Re)^{1/2} \quad \cdots \cdots \cdots \cdots \cdots (5)
\]

\(v_a \)：バーナからの吹き出し速度
\(V \)：主流速
\(Z \)：バーナからの距離
\(R \)：バーナ半径
\(Re \)：レイノルズ数

である。なお、この文献および今回の測定では、SiO₂でコーティングした直径50 \(\mu \)mのPt/Pt-13%Rh熱電対を用いている。

温度測定に関しては、熱電対による値とはほぼ一致し、図5において火炎帯付近で±100°C程度の違いとなっている。温度評価における不確かな要因としては、一般的にはまず圧力狭まり（Pressure Narrowing）の問題が挙げられる。しかしながら、1/5ビーグによる評価方法は圧力依存性が小さいことがわかっている。

(1)もともと今回の燃焼場は大気開放であるので無視できるものと思われる。また、SN比の問題については装置の性能によるものであるが、光路設定時の作業技術という人為的要因が大きく、定量的な議論が難しい。そのほか、今回の装置では波長が470.8～475.8 nmの範囲を512 chの分光器で分析したが、その結果、温度評価の最小さどみは1400°C付近で30°C程度であった。なお、熱電対の熱射補正には燃焼場における気体の熱物性値が必要となるが、これらを正確に求めることは困難であるため、熱射補正は行われなかった。しかし、火炎近傍においては最大10%程度の誤差が見込まれる。

図5のバーナの近傍では今回測定した熱電対による値が高くなっているが、これは、熱電対が火炎からの熱射を受けるためと考えられる。このように、熱電対では測定点の周囲の影響を受けるので、得られた温度分布はだらかな曲線となっている。これに対してCARSによる測定結果では、温度分布に2箇所の極大

図3 光学系の配置
図4 燃焼装置

図5 温度および濃度分布(\(\phi = 1.55, - f_a = 8 \))
図6 温度および濃度分布(\(\phi = 1.8, - f_a = 8 \))
が認められる。実際に形成されているのは混合火炎
と拡散火炎の二重火炎であるので、この測定結果は
空間分解能の点でCARSが優れていることを示
している。このことは逆にいって、火炎自体の微小な
ゆらぎが、測定結果のばらつきに与える影響が大きい
ということである。

濃度測定に関しては、定性的にはガスクロマトグラ
フによるものの一致しているが、ほぼ測定領域全体に
わたってCARSによる結果は低い値を示している。こ
の理由は、ガスクロマトグラフでの測定では、
ガス採取用プローブを火炎中に差し込むので、反応が
妨げられ、酸素が多めに測定されること、あるいはプ
ローブにより採取されたガス成分が、測定点周辺の平
均となってしまうことなどが考えられる。しかし、
CARSによってより大きな問題は、測定可能な濃度の
限界が存在するということである。

空間的分子数密度が減少すると、CARS光強度は低
下し、SN比が悪くなり温度および濃度が評価できな
くなる。それを補うために入射レーザ光を強めすぎる
と誘電破壊が起こり、測定不能となる。

また分子数密度の減少によりCARS光強度が低
下すると、非共鳴感受器の影響が相対的に大きくなり、
スペクトル形状がゆがみ、ピーク強度による濃度評価
の信頼性は低下する。そこでこれを考慮し、計算値と
のフィッティングにより低濃度の評価を行う方法も報
告されているが、温度の場合と同様に大なる手
間と時間を要するので、今回は採用しなかった。

本実験では、約3％が検出可能な酸素濃度の限界で
あった。この3％という値は絶対的なものではなく、
分光器の性能や測定領域の温度などによっても左右さ
れるが、今回のように、温度が高くなる伴って濃度
が低下するという状況では低濃度の検出は非常に困難
になる。

4-2 吹き飛び近くの温度・濃度分布
図3-8に、バーナーに吹き付けられる流速を増加させて火炎が吹き飛び
に至るまでの温度分布の変化を測定した例を示す。
図中aはあおどい速度こう配であり

$$a = \frac{2V}{R}$$

である。

これをみると、例えば、温度分布の二つの極大の大き
小関係の変化や最高温度の低下の度合などがよくわかる
るし、火炎帯の影響を示すように外部への熱損失の
割合を求めることができた。このような温度分
布の変化を各種の条件（当量比、吹き出し速度など）に
関して知ることは、燃焼研究において非常に興味深い
ことであるが、ここに示したような火炎の測定に熱電
対を用いることは燃焼場を乱し、吹き飛び条件を変え
るため不可能である。

図9には、同様に酸素濃度分布の変化を示すが、酸素
濃度については前述のように測定限界があったが、こ
の例では吹き飛び先の場合（$a = 548$ cm/s^{-1}）において、
測定範囲全域で検出が可能であり、火炎帯を通して酸
素がリーチしていることから火炎の反応強度が低下し
ている様子がうかがえる。

このように、今回の燃焼場においてはCARSは非
常に有用であった。しかしながら、温度測定について
は、測定範囲全域にわたって多量の同一分子が存在し
ていることが必要であり、そうでない場合は、例えば
純粋拡散火炎や酸素・燃料の予混合火炎などの場合に
は、測定に際して困難が生じることが予想される。

濃度測定に関してガスクロマトグラフと比較す
ると、多成分同時測定ができないことがCARSの欠点
の一つとして挙げることができる。対象成分に応じて
色素レーザの波長を変える作業は実際上、特に手間
のかかることであり、測定の簡便性という点ではまだ
問題があるといえる。
図 9 酸素濃度分布の速度こう配による変化

また、今回酸素濃度評価に用いた方法は他の成分（CH₄、CO、H₂など）にそのまま適用することはできず、参照セルまたはフィッティングによる方法かその他の方法を検討しなければならない。

5. 結論

（1） 本実験の燃焼場の温度測定に CARS を用いることにより空分解能の高い結果を得ることができ、温度評価の最小さきは 1400℃付近で約 30℃であり、火炎自体のゆらぎなどの影響も含んだ測定結果のばらつきは ±100℃程度であった。

（2） CARS を用いて、比較的簡便な方法により酸素濃度を評価できることがわかったが、その方法では今回の燃焼場において約 3％が検出可能な濃度の限界であった。

（3） 火炎の吹き飛び機関に知見を与える。吹き飛び直前の温度分布、酸素濃度分布を測定することができた。

文 献

（1） 前田、現代化学、15(1983)，56。
（4） 前田・足立・五十嵐、分光研究、28-6(1979)，353。
（5） 徳井・五味、日本航空宇宙学会誌、35-401(1987)，303。
（7） 梅山・藤本、機械の研究、37-1(1985)，1253。
（8） 大沢、燃焼研究、74(1987)，12。
（9） 足立・菅原・前田、レーザー研究、18-3(1985)，232。
（11） 渡辺・手塚・五味・藤井、第22回燃焼シンポジウム前刷雑、(1984-11)，10.