下向き凝縮面の伝熱促進に関する研究*
(凝縮面を傾斜させた場合の実験結果)

野津滋*1, 本田博司*2
小林勉*3, 稲葉英男*1

Experimental Study of Condensation Heat Transfer from
Downward-Facing Inclined Surfaces

Shigeru NOZU, Hiroshi HONDA,
Tsumoto KOBAYASHI and Hideo INABA

Experiments were performed to study the effect of surface inclination on condensation heat transfer from downward-facing horizontal surfaces. A smooth surface and two low-fin surfaces with a length of 50 mm were tested for condensation of R-113. The angle of inclination from the horizontal \(\phi \) ranged from 0 to 90 deg. For the smooth surface, the heat transfer coefficient \(\alpha \) first decreased with the increasing of \(\phi \), then took a minimum near 50 deg, and then increased monotonically with further increasing \(\phi \). For the low-fin surfaces, \(\alpha \) increased sharply with \(\phi \) in the range of 0 to 30 deg, and then increased moderately with further increasing \(\phi \). The heat transfer coefficient for the better performing finned surface was 2.5, 9 and 12 times the smooth surface value for \(\phi = 0, 10 \) and 90 deg, respectively.

Key Words: Condensation, Heat Transfer Enhancement, Refrigerant, Downward-Facing Inclined Surface

1. 緒 言

電子素子の発熱密度の増大にともない、高性能の冷却法として浸没冷却に対する関心が高まり、研究が盛んになっている。この冷却法では、発生蒸気を凝縮させるための凝縮器が必要となる。その形式として様々なものが検討されているが、容器の上面または側面を凝縮器として使用するのが最も簡便な方法であると考えられる。

著者らは下向き水平凝縮面下部に蒸気空間が存在する場合\(^1\)および凝縮面が液中に浸漬されている場合\(^2\)の熱伝達特性とその促進法について実験的に検討し、多孔質排液板を取付けたフィン付き面を使用することによって熱伝達が平滑面に比べて大幅に促進されることが見いだした。これは、フィン間溝部に充満した凝縮液が毛細管力によって効率良く多孔質排液板へ引き込まれ、フィン頂部が高性能の凝縮面として働くためである。同様の排液効果は伝熱面を傾斜させ、重力を利用することによっても期待できる。

本報では平滑面と2種類のローフィン付き面をとりあげ、下向き面上の凝縮熱伝達に及ぼす伝熱面傾斜角の影響を冷媒 R 113 を用いて実験的に検討する。

記号

\(h \)：フィン高さ
\(l \)：伝熱面の長さ
\(\Delta P \)：周囲蒸気と溝部の液の圧力差
\(p \)：フィンピッチ
\(Q \)：冷却水受熱量
\(s \)：フィン先端のフィン間隔
\(T_s \)：飽和温度
\(T_w \)：平均壁温
\(\rho \)：伝熱面の幅

\(z \)：面の上端から下端へ向かって測った距離
\(\alpha \)：投影面積基準平均伝熱係数 [式 (1)]
\(\theta \)：フィンの半頂角
\(\rho \)：液の密度
\(\sigma \)：表面張力
\(\phi \)：凝縮面の傾斜角（図 1）

2. 実験装置および実験方法

実験装置の概要を図1に示す。供試凝縮器は内寸法
壁温を測定するために、図1(a)に示す3断面の中心
ならびに中心から10 mmおよび20 mmの位置の計
15箇所の凝縮面裏側に長さ10 mmの溝を幅方向に加
工し、素線径0.127 mmのテフロン被覆銅コッタ
ジンデン熱電対を埋め込んですんだ付けした。素線はダ
クト壁に設けられた小孔を通して冷却水供給流路の上
側より取り出し、なお、図1(a)中の寸法mとnと
の値は、面Aについて41 mmと83 mm、面Bおよび面
Cについては25 mmと50 mmである。

供試流体には冷媒リリックを使用した、封入量はヒー
タの上方約20 mmまでとした。飽和温度T_sは約53℃
に設定し、容器内の圧力が大気圧より低いぶん高め
にあるようになった。この条件下で冷却水の流量と温度お
およびヒータの発熱量を調節することにより、後述の凝
縮温度差(T_f−T_w)は1.7～3.5 Kの範囲のデータを得
た。また、供試面上の凝縮状態およびフィン間隔部の
液膜状態を写真撮影した。

投影面積積算熱伝達係数αを次式で定義する。

\[\alpha = Q_f / (\text{A}(T_f - T_w)) \] (1)

ここにQ_r = Q_f - Q_hの冷却水の流量と温度上昇か
ら算出される冷却水の熱流束、Q_fは伝熱面以外から
ダクト内冷却水への伝熱流束、Aは伝熱面の幅、T_w
は平均凝縮面温度（フィン付き面の場合はフィン根元
温度）である。T_wは15箇所の局所壁温の平均値にフィ
ン根元までの熱伝達補正を加えた値を用いた。局所
壁温のばらつきは(T_f−T_w)約10 Kのときに最大1.2
Kであった。Q_fの値は、あらかじめ求めた検定曲線よ
り算出した。この検定曲線は、伝熱面を熱試料に覆っ
て状態で本実験と同じ操作を行うことによって求め
た。Q_f/Q_hの値は(T_f−T_w)の値が小さいほど大きく、
最大13%に達した、冷却水の温度上昇は0.3～3.3 K

<table>
<thead>
<tr>
<th>表1 凝縮面の各部寸法</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fin pitch p mm</td>
<td>0.97</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Fin height h mm</td>
<td>1.80</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Fin spacing at fin tip s mm</td>
<td>0.82</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Fin half tip angle (\theta) rad</td>
<td>0.094</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Surface width (w) mm</td>
<td>248</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Surface length l mm</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Actual area/Nominal area</td>
<td>1.00</td>
<td>4.38</td>
<td>4.80</td>
</tr>
</tbody>
</table>

図1 実験装置の概略
図2 フィン断面形状

--- 196 ---
3. 実験結果および考察

3・1 凝縮様相 図3はφ=0°~14.9°、(Ts- Tw) 30 Kにおける面A上的凝縮様相を比較したものである。φ=0°では伝熱面上にばかり規則性を有する液滴の分布が見られ、その成長・離脱が観察されている。φ=1.5°では伝熱面上の液滴はゆっくりと下端へ移動し、液の落下はφ=1.5°では面上および下端から、φ=2.6°および3.4°では下端のみから生じている。さらにφが大きくなると、凝縮様相は液滴の変形、傾斜方向に平行な峰の形成を経て、φ=14.9°の写真に見えるように面全体がかなり平滑な気液界面を有する液膜で覆われる状態へと変化する。上述の凝縮様相の変化は(Ts-Tw)が小さいほど小さなφで生じる傾向が見られた。

図4はφが0°付近で(Ts-Tw) 10 Kにおける面B、C上の凝縮様相を比較したものである。図4(a)の面Bについては見ると、凝縮液はウィン間溝部を伝って流れ、φ=0°では面のほぼ中央から、φ=1.2°、2.8°では面の下端付近から離脱している。図4(b)の面Cについて見ると、φ=0°および1.3°では伝熱面上の数箇所に液滴や溝と直角方向に連なる峰が見られ、凝縮液の一部はφ=1.3°でも面上から離脱している。この傾向は(Ts-Tw)が大きいほど顕著であった。φ=3.6°では凝縮液の離脱は下端のみで生じている。また面B、Cともに凝縮線上端のウィン間溝部には凝縮液が充満しているのが観察された。

上述の面B、Cの凝縮液の挙動の相違は、ウィン間の溝幅の差によると考えられる。すなわち、溝幅が比較的大きい面Bは凝縮液の流れに対する抵抗が小さく、溝に沿う流体速度が早いため離脱位置は伝熱面上の1箇所になったのに対して、溝幅が小さい面Cは流動抵抗が大きく、流体速度が遅いためにφ=0, 1.3°では複数の位置で凝縮液の離脱が生じていると考えられる。

図5はφが比較的大きい場合の(Ts-Tw) 10 Kにおける面B、C上の凝縮様相を比較したものである。図5(a)の面Bについて見ると、矢印で示される位置のウィン間溝部には光の反射が見られる。また、φ=9.4°の写真から明らかのように、面上端のウィン間溝部には凝縮液が充満していない。図5(b)の面Cについて見ると、φ=13.9°では矢印で示される位置より下方では凝縮液がウィン間溝部をあふれ、φ=57°および90°では面の下方ウィン間溝部に2列の光の反射点が見られる。これらの現象は、面Bではφ≥4.0°およびφ=2.8°(Ts-Tw)≤5 Kの場合に、面Cではφ≥30°およびφ=13.9°(Ts-Tw)≤7 Kの場合に見られた。上述の光の反射は水平ローフィン付き管上

図6はφの測定値を(Ts-Tw)に対してプロットしたものである。ここでは、φの測定値には液の離脱を生じない溝における平均値を採用した。φはφの増

図3 凝縮様相の比較（面A、(Ts-Tw) 30 K）

図4 凝縮様相の比較（(Ts-Tw) 10 K）
下向き凝縮面の伝熱促進に関する研究

大つれて増加し、面 B では \(\phi = 31.9^\circ \) で \(z_l/l = 0.9 \) に、面 C では \(\phi = 57.0^\circ \) で \(z_l/l = 0.7 \sim 0.82 \) に達し、それ以上の \(\phi \) における \(z_l \) の変化は小さい。

ここで液充満位置について考察する。図 7 に物理モデルを示す。図 7 において記号 \(z \) は凝縮面の上端から測った距離、\(s \) はフィン先端のフィン間隔、\(h \) はフィン高さ、\(\theta \) はフィンの傾斜角である。図 7 (a) において、0 \(\leq z \leq z_l \) ではフィン上部の凝縮液は表面張力によってフィン間隙部へ引き込まれ、重力によって下端に向けられて溝部を流下する。一方、\(z_l \leq z \leq l \) のフィン間溝部は表面張力の作用により凝縮液がほぼ満ちている。

\(z = z_l \) における溝部気液界面は図 7 (b) に示されるようにフィン先端でフィン側面に接するものとする。水平およびフィン付き管の溝部液膜形状に関する前報の解析結果から判断すると、図 7 (b) の \(z \) 軸に直交する断面における面 B、C の溝部液膜形状は円弧で近似できる。その曲率半径を \(r_0 \) とする。図 7 (a) のフィン間溝部中央断面における溝部液膜の曲率は \(z = z_l \) の近傍で正から負に変化する。したがって、\(z = z_l \) における曲率半径の絶対値は \(r_0 \) に比べて十分大きいと考えられる。この位置における溝部液膜の気液の圧力差 \(\Delta P_l \) は次式で表される。

\[
\Delta P_l = \sigma \gamma = 2 \pi \cos \theta/s \quad \cdots \cdots \cdots (2)
\]

\(z_l \leq z \leq l \) のフィン間溝部における凝縮液の流動抵抗を無視すれば、\(z_l \leq z \leq l \) の溝柱の圧力差 \(\Delta P_t \) は次式で表される。

\[
\Delta P_t = \rho g \Delta H = \rho g (l - z_l) \sin \phi \quad \cdots \cdots \cdots (3)
\]

伝熱面の下端部では凝縮液が滴下または液柱の形で落下する。これらの落下点の中間部では溝部に液が充満し、液充満位置の計算モデルは図 6 を用いた。
下向き凝縮面の伝熱促進に関する研究

2000年6月15日

3.2 熱伝達 レオ (a)～(c)はそれぞれ面A～Cについて、αと(T_a - T_w)の関係をφをパラメータにとって示したものである。図8(b)には鉛直面上および下向き水平面上の層流膜状凝縮熱伝達に関するNusselt IIおよびGerstmann-Grieff IIIの式が併記されている。

図8(a)の面Aについて見ると、αはφの増大につれていったん低下し、最小値に達した後増大し、φ=90°で最大になる。αの最小値を与えるφは(T_a - T_w)の増大につれて大きくなり、(T_a - T_w)≥8 Kではφ=5.1～6.4°となる。この角度は図3に示されるように、凝縮面上に峰が形成され、面の大部分が厚い液膜で覆われる角度にほぼ対応する。なお、φ=0°に対する実験値はGerstmann-Grieff IIIの式による予測値よりも15～20%小さい。しかし、彼らの実験値も予測値よりも10～15%小さいので、この差は彼らの解析の不十分さによるものと考えられる。一方、φ=90°に対する本実験値はNusselt IIの式とよく一致している。

図8(b)の面Bについて見ると、αはφ=0°で最小値をとり、φの増大につれて単調に増加している。αの(T_a - T_w)による変化はNusselt IIおよびGerstmann-Grieff IIIの式よりもややややであり、そのこう配はφに依存するべは一定である。

図8(c)の面Cについて見ると、φ=0°と1.3°においてαはほとんど等しく、その後φの増大につれてαも増大する。αの(T_a - T_w)による変化は(T_a - T_w)≤5 Kでは面Bと同程度かまたは多少急こう配であり、(T_a - T_w)≥5 Kではφ=2～30°において(T_a - T_w)の増大によるαの減少率がより顕著になる。そして、(T_a - T_w)≤20 Kではφ=0～3.6°に対するαはほぼ一定の値をとる。これらの結果は図4、5からも明らかのように、面Cは面Bに比べてフィン間溝部に凝縮液が充満しやすいことに関係があると考えられる。φ=0°と90°の場合を比較すると、同一の(T_a - T_w)において後者は前者の約5.5倍の伝熱性能を示している。

図9は面A～Cの(T_a - T_w)=10 Kにおけるαをφに対してプロットしたものである。図9中には傾斜
平滑面上の層流膜状凝縮に関するNusseltの式および下向き平滑面上の層流膜状凝縮に関するGerstemann-Griiffithの式、ならびに$l=0.46\$ mの下向き平滑面に関するGerstemann-Griiffithの実験値が併記されている。平滑面について本実験値とGerstemann-Griiffithの実験値を比較すると、両者共にφの増大につれてαは最初減少し、最小値をとった後に増大している。αが最小となるφの値は本実験では約30°、Gerstemann-Griiffichの実験では約20°である。この相違は両供試面のlの値の差によるものである。なお、0°≤φ≤5°では両実験値は良く一致している。また、αの最小点よりφが大きい領域では、本実験値はNusseltの式と良く一致し、Gerstemann-Griiffichの実験値はNusseltの式よりいくぶん高めである。この相違も両伝熱面のlの値の差によるものである。図9中の一点錐線はφが小さい領域に対するGerstemann-Griiffichの式を示す。この式のφによるαの変化の傾向は実験値とかなり異なる。したがって、彼の物理モデルは現象を正しく表していないと考えられる。

つぎに、面B、Cについて見ると、αはφの増大につれて最初急激に増大し、φ=30°になると変化がゆるやかになる。αの値は0°≤φ≤30°では面Bのほうが大きく、30°≤φ≤90°では面Cのほうが大きい。この相違は両伝熱面のフィード法の相違によるものである。すなわち、風向間隔の小さい面Bでは溝に沿う液流に対する駆動力である溝方向の冷力成分が大きい領域ではフィード間隔部の凝縮液が充分に流下し、したがって、有効伝熱面積がフィード間隔の大きい面Bよりも減少すると考えられる。一方、g sin φが大きい領域では大部分フィード間には凝縮液が流下していないので、風向間隔の小さい面Cのほうが有効伝熱面積が大きくなると考えられる。これらのことから、φが小さい領域ではフィード間隔部の排液が良好なフィード間隔が比較的大きい面が、φが大きい領域では実面積と投影面積の比が大きいフィンピッチの小さい面が有効であると考えられる。

図9の計算値5)は加熱面の伝熱促進面に関する従来の実験値16)～17)に比べると、いずれも凝縮物質はR113である。計算した伝熱面はそれぞれの結果において最高の伝熱性能を示した面に関するものである。その概略を図2に示す。なお、図中の伝熱面は円板面。Hijikataら18)の伝熱面は面積140°の円すい面であり、その他は板状面である。前記の結果が、円柱をlの値に記してある。まず、片面面について比較すると、本実験の面B、C（ローフィン付き面）は面A（平滑面）の2.3～2.5倍の伝熱性能を示している。この面はフィン付き面に排液装置を取付けたHondaらおよびHijikataらの実験値よりもかなり低い。しかし、伝熱面を10～30°傾斜角させると、排液装置付きの水平面と同程度の性能が得られる。つぎ
下向き凝縮面の伝熱促進に関する研究

4. 結論

下向き面の凝縮伝熱性能及ぼす伝熱面傾斜角の影響をR113を凝縮物質とし、平滑面および2種類のローフィン付き面を用いて実験的に検討した。主な結論は以下の通りである。

（1）平滑面上の凝縮相は、面の傾斜角の増大につれて液滴状から峰状を呈し薄い液膜状へと変化する。これに対応して、平均熱伝達係数はいったん減少した後に増大する。下向き平滑面の平均熱伝達係数はGerstmann-Griffithの式より15〜20％低い。峰状凝縮モデルに基づくGerstmann-Griffithの式は傾斜角の影響を正しく表さない。液膜状凝縮領域ではNusseltの式と良く一致する。

（2）ローフィン付き面の傾斜角が小さい場合には、フィン間隙部に凝縮液がほぼ充满している。傾斜角が一定の大きさ以上になると、フィン間隙部の液膜厚さが急増する液膜充満位置が存在し、それより下方のフィン間隙部に凝縮液が挿入している。傾斜角が大きい場合には、液膜充満位置は式(4)による値にほぼ一致する。一方、傾斜角が小さい場合には、凝縮量の増大について式(4)による値より上方へ移動する。

（3）ローフィン付き面の平均熱伝達係数は傾斜角の増大について単調に増加する。増加の割合は傾斜角が30°以下の領域で顕著である。その値は傾斜角が小さい領域ではフィンピッチの大きい面のほうが高く、傾斜角の大きい領域ではフィンピッチの小さい面のほうが高い。

（4）ローフィン付き面の平滑面に対する伝熱促進率は、傾斜角0°、10°、90°についてそれぞれ25、9、12に達した。傾斜角10°のローフィン付き面の平均熱伝達係数は、水平ローフィン付き面に排液装置を取付けることによって得られた従来の値と同程度であった。

なお、フィン間隙部の液膜の流動を考慮した凝縮熱伝達speedの解析と本実験結果との比較を統計で報告する。最後に、本実験に際し本学の今井達也技官と4年生の森田昌幸君の協力を得たことに謝意を表する。

文献

（3）本田・ほか2名, 機論, 52-475, B. (1986), 1355.
（4）本田・ほか4名, 機論, 56-525, B. (1990), 1493.
（9）Markowitz, A., 機工学, 1 (1972), 315.
（12）Mori, Y., 機工学, 1 (1984), 96.