磁性流体の管内振動流に関する研究*
（粒子の凝集を考慮した場合の理論解析）

神 山 新一*1，鳥 田 邦 雄*2

Oscillatory Flow of Magnetic Fluid in a Pipe
(Theoretical Analysis in Cosideration of Particle Aggregates)

Shinichi KAMIYAMA and Kunio SHIMADA

Theoretical analysis of oscillatory flow of a magnetic fluid in a circular pipe in a nonuniform magnetic field is conducted by taking into account the aggregate of magnetic particles. As a model of the particle aggregate, and elongated ellipsoid is considered. In the numerical calculations, the effects of the frequency and applied field on the velocity distribution of oscillatory flow are classified. Also, the effect of the applied field on the amplitude of fluctuating pressure is compared with the experimental data obtained by the authors. A reasonable agreement is obtained between theory and experiment if the elongated ellipsoid particle aggregate is assumed.

Key Words: Magnetic Fluid, Oscillatory Flow, Fluctuating Pressure, Numerical Analysis, Velocity Distribution, Magnetic Field

1. 緒 言

磁性流体の特性を利用した応用機器の開発の一例であるダンパーやアクチュエータなどの管内振動流の特性についての基礎的研究において、著者らは前に、磁性流体の非定常流の特殊な場合である管内振動流の研究を行った。それによると、ベイマス数の小さな周波数の流体においては、与えた変動流に対する変動压差は、磁場を管軸に対して垂直に印加することにより異常な増加を示すことが実験的に示された。これに対し、磁性流体を非磁性流体とし、あるいは、流体の厚さを変動流を考慮し、磁性流体の微粒子が球形であると仮定した場合の理論解析では、実験結果を定性的に説明するのみで、定量的に説明するには不十分であった。その理由として、磁場下における微粒子の凝集の評価が十分でないことが考えられる。これに関連した問題として、磁性流体のレオロジー特性を凝集した粒子を回転流体で置き換えて説明する理論的研究が、三行われている。

そこで、本研究では、この結果を応用し、凝集した微粒子を縦長の回転体に置き換えて、管内振動流の理論解析を行った。

2. 理 論 解 析

図1に示すように、数個の球形の微粒子が凝集したときの形状が、長軸b、短軸aなる短い回転体に近似できるものとする。今、個々の球形粒子の磁気モーメントが、その回転体の長軸方向をすべて一致するように配置され、それぞれの磁気モーメントの総和が回転体の粒子の磁気モーメントに等しいとし、その回転体の粒子が一様に分散している場合を考える。この場合、回転ベクトルが小さい場合、運動方程式は、Tsebersの誘導を参考に、次のように表される。すなわち、磁場の印加による見掛けの粘度の増加は、回転体の粒子の磁気モーメントと磁場との外積で求まる。

ここで、
磁性流体の管内振動流に関する研究

\[\Delta \eta = \frac{\alpha}{\beta} \left[\left(\frac{\xi - \tan \xi}{\xi + \tan \xi} \right) \sin^2 \theta \right] \]
\[+ \frac{\alpha}{\beta} \left(\frac{2L_t - L_s}{L_s} \right) \left[\left(\frac{\xi - \tan \xi}{\xi + \tan \xi} \right) \cos^2 \theta \right] \]
\[\Delta \eta = \left(\frac{2L_s - L_t}{L_s} \right) \sin^2 \theta + \frac{\alpha}{\beta} \left(\frac{2L_t - L_s}{L_s} \right) \cos^2 \theta \]
\[\Delta \eta = \left(\frac{2L_s - L_t}{L_s} \right) \left(\frac{\xi + \tan \xi}{\xi - \tan \xi} \right) \]
\[L_s = \cosh \xi - 1/\xi, \quad L_t = 1 - 3/\xi, \quad L_s = L_s - 5L_s/\xi \]
\[\lambda = (1 - \rho^2)/(1 + \rho^2), \quad \xi = \mu \mu m H_0 / k T, \quad \rho = a/b \]

（2）

このところ、Wo（=r_o \sqrt{\alpha / 2}）は管半径 r_o、振動の角度 \(\alpha \)，流体の動粘性係数 \(\nu \) を用いて表したウオマスリ数であり、また、\(\xi \) は与えられた変動流による平均流速 \(\overline{v_x} \) を代表速度とした無次元流速、\(\rho^* \) は磁気圧を含む圧力を \(\eta \overline{v_x} r_o \rho \) で無次元化した圧力である。また、\(r^* = r / r_o, z^* = z / r_o, \overline{u}^* = \overline{u} / \alpha \) は磁性体の単位体積値にたいする回転粘度であり、次式で表される。
\[a = 2 \pi \overline{v_x} r_o \theta \]

ただし、N：単位体積当たりの球形粒子数、k：ポルツマン定数、T：温度、s_a：プラウン運動の緩和時間、p_a：回転渦円粒子の体積密度、g_a：母液の粘度である。また、\(\alpha \) は、球形粒子におけるプラウン運動の緩和時間と回転渦円粒子におけるプラウン運動の緩和時間との比であり、次式で与えられる。
\[\Theta = \frac{2}{3} \frac{1}{(2\pi)^2} \frac{1}{\rho^2} \ln \frac{1}{\rho^2} - \frac{1}{\rho^2} \]

また、軸比 \(\rho \) は、\(Nu \) 個の球形粒子が凝集することから、次のように表される。

\[1/Nu \leq \rho < 1 \]

この場合、球形粒子の場合には、\(\Theta = 1, \rho = 1 \) である。
また、\(\rho = 1/Nu \) のとき、球形粒子が長軸方向に一列に凝集した場合である。

また、本解析における凝集する球形微粒子は、表面活性剤を含まない磁性体ののみの球形微粒子を考えて、すなわち、次式が成立することを仮定した。
\[N = 6.612 \times 10^8 \quad [\text{m}^{-3}] \]
\[m = 2.0 \times 10^{-14} \times Nu \quad [\text{A} \cdot \text{m}^2] \]

ただし、\(m \) は回転渦円粒子の磁気モーメントである。

一方、無磁場下の場合には、\(\xi \to 0 \) として見掛けの粘度の増加 \(\Delta \eta_0, \Delta \eta, \Delta \eta_3 \) は式のように表される。
\[\Delta \eta_0 = \Delta \eta_3 = 11 \alpha / 120 \]

すなわち、粒子が非球形であることにより生ずる回転粘度に基づく見掛けの粘度の増加を表している。
今、一次モデルの基本振動を考え、式（1）を差分法により解き、振動流の速度分布を求めめる（9,10）。

また、変動流量が与えられた場合の管内2点間の変動圧力差は、求めた速度分布 \(\overline{u}^* \) を管断面にわたって積分し、さらに流量一定の条件のもとで軸方向に積分することによって次のように求まる。
\[\Delta p^* = -\int_0^{1/r_o^*} \int_0^{2\pi} \int_0^{u^*} \overline{u}^* r^* \overline{u}^* d\theta \]

（8）

ここに、\(\overline{u}^* = \overline{u}^* (\overline{u}^* / \overline{u}^*), \overline{u}^* = \overline{u}^* (\overline{u}^* / \overline{u}^*) \)：平均変動流速の振幅である。また、\(L_s = L_s / r_o \) は、管内2点間の距離の無次元表示である。

3. 数値計算例および結果の考察

数値計算は、文献（2）で実験に用いた磁場分布（電磁石への供給電流 I = 20A）を質量濃度 20 %のセラス磁性流体の管内振動流に印加した場合について行なった。すなわち、動粘性 \(\nu = 2.275 \times 10^{-4} \text{m}^2 / \text{s} \)、密度 \(\rho = 1.198 \times 10^3 \text{kg} / \text{m}^3 \) の磁性流体で、用いた直径円管の管半径 \(r_o = 0.05 \times 10^{-3} \text{m} \) である。

図2に \(\rho = 1/Nu \) のときの速度 \(\overline{u}^* \) の半径方向分布を示す。すなわち、与えられた変動圧力こう配に対する変動流速の振幅の分布を示す。無磁場下においても磁場下においても粒子の凝集数 \(Nu \) が大きくなると半径方向の \(\overline{u}^* \) の変化が小さくなる。そのため、凝集が生じない場合には、ウオマスリ数 \(Wo \) の大きさになるとアニュラ変形が現れるが、凝集を仮定した場合においては、粒子数 \(Nu \) が増すほど、アニュラ変形が抑えられるようになる。また、凝集体生じない場合には磁場
磁性流体の管内振動流に関する研究

の印加による U_2^*の変化は小さいが、凝聚を仮定した場合には、磁場印加による U_2^*の変化は著しくなる。

図3に $\rho=1/Nu$ のときの管轴における流速分布の変化を示す。Woが小さい場合には、凝集の数 Nuが大きくなると凝集が生じない場合に比べて θ方向の流速の変化が顕著になる。

図4に $\rho=1/Nu$ のときの管軸における流速 U_2^*の時間変化を示す。粘性力が支配的となるウオマスリ数 Woが小さい場合には、無磁場下においては、凝集が生じない場合に比べて凝集を仮定すると U_2^*は小さくなり、磁場を印加することによりさらに小さくなる。しかしながら、慣性力が支配的となる Woが大きい場合には、無磁場下においても磁場下においても U_2^*は、小さくならない。次に、U_2^*の位相について見てみると、Woの大きさにかかわらず、粒子の凝聚を仮定した場合は、凝集が生じない場合に比べて U_2^*の位相が早くなる。

次に、図5には管内振動流の2点間の変動圧力幅の時間変化を示す。振動数の影響の振動数依存性の解析結果を文献(2)で実験的に求めた結果と対比して示した。すなわち、$\rho=1/Nu$ のときのウオマスリ数 Woに対応する磁場印加による圧力差の増加率を示した。凝集が生じない場合に比べて凝集を仮定した場合には、圧力差の増加率が大きくなり、さらに、凝集する粒子数 Nuが大きくなるほど、圧力差の増加率はより大きくなる。このとき、Nuの増加に伴い、圧力差の増加率は指数関数的に大きくなる。これは、式(4)の ρの変化に基づくものである。実験値は、$Wo=5$の近付で100〜200%の増加率を示しており、$Nu=1$の理論では説明できないが、Nuの振動数依存性を考慮すれば、凝集を仮定することにより定性的に説明できる。

図6には $\rho=1/Nu$ のときの管軸におけるウオマスリ数 Woに対する変動流数と変動圧力幅との位相差を示す。ウオマスリ数 Woの増加とともに、位相差は0°から90°に移行するが、その増減過程は凝集粒子の数 Nuの増加とともに緩慢になる。
磁性液体の管内振動流に関する研究

4. 結 言

磁性液体の管内振動流において、微粒子の凝聚を細長い回転円形の粒子が分散していると仮定して理論解析を行った。本研究で得た結果を要約すると次のようになる。

（1）凝聚する粒子数の増加に伴い、凝聚が生じない場合に比べて、与えられた変動圧力に対し変動流速の振幅は小さくなるが、半径方向流速分布の周期方向の変化は無視できない。

（2）凝聚粒子数の増加により、変動流速に対する変動圧力の位相差は小さくなり、磁場印加による圧力差の増加率が大きくなる。そして、これらの計算結果を用いれば、先に求めた実験結果を定量的に説明することができる。

終わりに臨み、本研究には平成元年度科学研究費（課題研究（2））の援助を得ていることを付記し謝意を表する。

文 献

（1）神山・ほか 3 名、機論、54-508、B（1988）、3331。
（2）神山・鳥田、粉体粉末冶金、36-6（1989）、794。
（3）神山・松田、機論、57-536、B（1991）掲載予定。
（5）土井、機械論（磁性液体工学、仙台）、No. 868-12（1986-12）、46。
（9）Perrin, F., J. phys. et radium, 7-5(1934), 497.