1. 結 論

空間分解能および時間分解能が優れていることに加え、統電対では得られない多くの情報が得られるため、静電探針を用いて乱流予混合火災の燃焼状態を観測する試みが数多く行われてきた。さらに最近では、静電探針を用いて高強度乱流予混合火災の微細構造を計測する試みがなされている。しかし、乱流火災帯において計測されるイオン電流波形は火炎の局所的な曲率の影響を受けたと考えられる信号が混在している。これらの波形を適切に解析すれば、火炎の局所的な曲率すなわち形状を推定することが可能になると考えられ、高強度乱流予混合火災の微細構造をよりいっそう明らかにすることが期待される。静電探針により記録されるイオン電流波形は、火炎帯におけるイオン密度分布のみならず、火炎の局所的な速度、角度、形状などの火炎の種々の特性の変動に起因することが知られている。

これらのことに関し、探針電位、探針長さ、探針直径、探針通過の火炎の速度および角度とイオン電流波形の関係については、これまでに詳細に調べられてきた。しかし、火炎の局所的な形状とイオン電流波形の関係については、火炎の局所的な曲率半径が探針の受感部の寸法に比べてある値より小さくなると、その影響を無視し得なくなることが指摘されている。したがって、曲率の関係が明らかにされていないとは言い難い。これにより、従来研究されてきた乱流予混合火災が比較的弱い火災であったことによるものと考えられる。すなわち、強い火炎火災では、火炎の局所的な曲率が探針の受感部の寸法に比べて十分大きくなり、局所的に火炎が平面であるとの仮定が成り立ち、その影響を無視し得る程度であった。そのために、火炎面の局所的な曲率がイオン電流波形におよぼす影響の重要性がこれまで指摘されてこなかったものと思われる。

火炎の局所的な曲率とイオン電流波形の関係を明らかにすることは、イオン電流波形を解析して高強度乱流予混合火炎の微細構造をよりいっそう明らかにするのに、大いに役に立つはずである。そこで本研究では、静電探針を用いて高強度乱流予混合火炎の微細構造を計測する場合の基礎的な知識を蓄積するために、曲率
のある火炎が静電探針を通過する際に火炎の曲率がイオン電流波形におよぼす影響を調べた。

2. お も な 記 号

<table>
<thead>
<tr>
<th>記号</th>
<th>定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>空間分解能の限界</td>
</tr>
<tr>
<td>Cxp</td>
<td>定圧比熱</td>
</tr>
<tr>
<td>I</td>
<td>無次元イオン電流</td>
</tr>
<tr>
<td>J</td>
<td>静電探針の微小部分に流れるイオン電流</td>
</tr>
<tr>
<td>Lp</td>
<td>探針の受感部の長さ</td>
</tr>
<tr>
<td>Sf</td>
<td>燃焼速度</td>
</tr>
<tr>
<td>T</td>
<td>溫度</td>
</tr>
<tr>
<td>Vf</td>
<td>火炎が探針を通過する速度</td>
</tr>
<tr>
<td>km</td>
<td>イオン電流波形の極大値</td>
</tr>
<tr>
<td>n</td>
<td>定数</td>
</tr>
<tr>
<td>r</td>
<td>イオンと電子の再結合反応の次数に依存する定数</td>
</tr>
<tr>
<td>t</td>
<td>局所的な火炎の曲率半径</td>
</tr>
<tr>
<td>λ</td>
<td>熱伝導率</td>
</tr>
<tr>
<td>α</td>
<td>火炎に垂直方向の距離</td>
</tr>
<tr>
<td>ρ</td>
<td>密度</td>
</tr>
<tr>
<td>τ</td>
<td>無次元時間</td>
</tr>
</tbody>
</table>

添 字

①: 既燃焼ガス
②: 着火点
③: 最大値
④: 未燃焼混合気
⑤: 無次元値
∞: 曲率が無限大の火炎

3. 火炎の曲率とイオン電流波形

すでに述べたように、火炎が静電探針を通過する際に記録されるイオン電流波形は、火炎帯におけるイオン濃度分布のみならず火炎の局所的な形状、速度、角度などに依存することが知られている。また、よく知られているように、シュレーディン写真等による観察によると、瞬間的にみた乱流混合火炎はその表面に凹凸が観察される。このような凹凸のある火炎を静電探針を使用して計測する場合に、火炎が探針を通過する様子を模式的に示すと図1のようになる。

図1に示すように、火炎の凹凸が探針の受感部の寸法に比べて十分に大きい場合、火炎は局所的に平面であると仮定することができ、イオン電流波形は火炎帯におけるイオン濃度分布および火炎が探針を通過する際の速度と角度に依存する。この場合には、イオン電流波形を解析する際に、火炎の傾きを考慮する必要がある。

一方、図1(b), (c)に示すように、火炎の局所的な曲率が探針の受感部の寸法に比べてそれほど大きくない場合には、火炎は局所的に平面であるとは仮定できず、イオン電流波形は、火炎帯におけるイオン濃度分布および火炎が探針を通過する際の速度と火炎の局所的な形状に依存すると考えられる。

ここで、火炎帯におけるイオン濃度の分布が、火炎帯の前半でアレニウス型で増加し、火炎帯の後半で二体衝突による再結合で減少すると仮定する。この場合、火炎が探針の受感部を通過する際にえられる受感部単位長さ当たりの無次元イオン電流Iが近似的に次式で表される。

\[
I_0 = \exp \left(k \left(\frac{\xi - a}{1 + a} \right) \right), \xi \leq \frac{a}{1 + a} \quad \ldots (1)
\]

\[
I_0 = \left(k \left(\frac{\xi + a}{1 + a} \right) \right)^n, \xi > \frac{a}{1 + a} \quad \ldots (2)
\]

ここで、

\[
I_0 = \frac{J}{n}, \xi = \xi_0, \xi_0 = \frac{a}{1 + a}, p, c, S, T
\]

\[
a = \frac{T_0 - T_i}{T_f - T_e}
\]

図2に示すように、静電探針の軸と平行である局所的に平面の火炎が受感部の軸に垂直方向の空間分解能Bの探針を速度Vfで通過する場合、探針の軸は紙面に平行で、火炎が探針を通過する際の速度と角度に依存する。
に垂直)。静電探針により記録される無次元イオン電流波形 I は次式で表される。\[I = \frac{1}{b} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I_{d} dt \] ここで、$b = B \xi, r = V_{f} \xi, \xi$ である。

一方、乱流火炎帯において火炎は種々の方向から探針を通過することが知られている。実際には、図 2 に示すような場合ばかりではない。図 3 に示すように、火炎の進行方向が探針の軸に対して傾いている場合、あるいは、図 1 (c) に示すように、銃口突起のある火炎が探針を通過する場合なども考えられる。しかし、これらの場合は、その取扱いが極めて複雑になるので別の機会に講論することにし、本研究では、乱流予混合火炎の局所的な形状を、図 4 に示すように、円弧で近似し、その中心が探針の受感部を直並で速度 V_{f} で通過すると考える。ここで、δ は火炎の曲率の中心の経路と探針の受感部との距離である。

このような場合、静電探針により記録される無次元イオン電流波形は次式で表される。

\[I = \frac{1}{b} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I_{d} dt \] ここで、$l_{s} = L_{s} / \xi_{s}$ である。

式 (4) を解析的に求めるのは困難であるため、実際には数値積分を行った。

$\delta_{s} = 0$ すなわち火炎の曲率の中心が探針の受感部の中心を通過する場合、局所的な火炎の曲率半径 r の変化によりイオン電流波形がどのように変化するかを求める結果を図 5 に示す。

イオン電流波形の形状を表す代表的な数値として、その極大値と半価幅がある。局所的な火炎の曲率半径の減少にともない、極大値と半価幅は、わずかずつであるが減少し、互いに接近するが、半価幅は、増加することがわかる。この結果から、局所的な火炎の曲率半径が無限に大きいとすれば、局所的にみて火炎を平面であると仮定すらができ、曲率の影響を無視することができ、さらに、δ_{s} とイオン電流波形がどのように変化するかを求めた結果を図 6 に示す。

火炎の曲率半径 r が一定であっても、δ_{s} が増加すると、イオン電流分布の極大値は減少し、半価幅は増加する。特に δ_{s} / r が 1.0 の場合、イオン電流波形は銃口ピクを示さず、極大に近い値で長い時間にわたって推移し、半価幅を定義することが困難な状態となる。

肉膜表面の燃焼の研究においては、図 5, 6 に示したような波形がしばしば観察され、局所的な火炎帯
の厚さが増加していると結論づけられていた^{12}～^{13}。しかし、ここで示したように、このような波形は曲率のある火災で探針を通じた際にも記録され、局所的な火災帯の厚さが増加したことの必要十分条件とはならない。

4. 実験装置および方法

変動している火災を静止している静電探針により計測する場合、それを通過する火災の速度や形状を自由に設定することはできないが、定常・固定火災を用い、それに対して静電探針を動かせば、火災の居所的な曲率半径を自由に設定することができる。そこで、本研究では、プロパン・空気の円管バーナ火災を用い、それに対して静電探針を動かすことにより、静電探針を通過する火災の局所的な曲率半径とおよび火災の曲率の中心と探針の受感器の径との距離a（実質上前出のaと同じ）を任意に設定し、実験を行った。

静電探針の構造、それを動かすための回転装置、およびイオン電流の検出回路を図7に示す。

静電探針を使用して乱流上混合火災の計測を行う場合、探針の形状や寸法などを注意深く設定する必要がある。前報^{30}では、火災の局所的な曲率に比べて探針の受感器の寸法が十分小さいとの仮定を満たすために、受感器の長さLpを0.5 mmとした。本研究では、静電探針により計測できる火災の曲率の範囲を考慮して、素線には直径0.1 mmの白金線を使用し、受感器の長さLpを1.0 mmとした。素線の受感部以外は細い石英管で被覆し、その外側を真ちゅう管で被覆し、さらにその外側をステンレス管で被覆、補強した。静電探針の駆動、それを回転盤に付け、ベレットを介してモータで行った。火災を通過する探針の受感器の速度は、回転盤の回転数を変化させることにより任意に設定することができる。受感器の速度を大きくすると、それが通過する際に火災が揺らぐようになり適正な結果が得られなくなる。また、その速度が小さいとそれが加熱され、石英管の結晶性、繊い素線の耐熱性および熱電子放出などが問題になる^{30}。これらのこと考慮して、予備実験を行い、探針の受感器の速度を3.0 m/sに設定した。

本研究では、出口径10 mm、長さ1200 mmの円管バーナを使用した。このバーナにより、円すい形の変動のない安定な火災が得られる。したがって、探針の受感器が通過する位置としてバーナ火災の先端部から基部までの部分を適当に選ぶことにより、火災の局所的な曲率半径を変化させることができる。探針の受感器が通過する位置の火災の寸法は視取り顕微鏡を用い

図5 火災の局所的な曲率半径の変化に起因するイオン電流波形の変化 (a=0 の場合)

図6 火災の曲率の中心の経路と探針の受感器との距離a の変化に起因するイオン電流波形の変化

図7 本研究で使用した実験装置
静電探針による乱流火炎構造の計測に関する基礎的研究（第１報）

1467

て計測した。
探針の受感部が通過する火炎の局所的な曲率半径 \(r \) は、無次元曲率半径 \(r/L_p \) が 0.5～3.0 になる範囲で、火炎の曲率の中心と探針の受感部の経路との距離 \(\delta \) は無次元距離 \(\delta/r \) が 0～1.0 になる範囲で変化させた。また、探針の受感部の回転半径は十分に長くし、それらが通過する平面がバーナー中心軸をほぼ垂直に通過するようにした。

探針点電圧は -12 V とし、バーナー本体を補償電極とした。静電探針により得られるイオン電流は、水銀槽を通じて検出回路に導いた。イオン電流波形は、12 bit の分解能で A/D 変換し、2 kbit のメモリに記録した後、解析を行った。

なお、燃料としてプロパンを用い、混合気の当量比 \(\phi \) は \(\phi = 1.1 \) の場合について実験を行った。

5. 実験結果および考察

火炎の曲率半径、および火炎の曲率の中心と探針の受感部の経路との距離を変化させた場合の、実験的にえられたイオン電流波形をそれぞれ図 8、9 に示す。

実験的にえられたイオン電流波形は、3 章で行った解析の結果と極めてよく一致していることがわかる。このことをさらに明確にするために、イオン電流の極大値と半価幅が、火炎の曲率、および火炎の曲率の中心の経路と探針の受感部との距離の変化にともないどのように変化するかを詳しく調べた。

火炎の局所的な曲率半径 \(r \) の変化にともない、イオン電流の極大値と半価幅が変化するようを図 10 に示す。ここで、横軸は無次元曲率半径 \(r/L_p \) で示し、縦軸は火炎の局所的な曲率が無限大である平面の火炎の場合のイオン電流の極大値 \(j_m \) あるいは半価幅 \(t_m \) で無次元化したイオン電流を示す。なお、図 10 中には 3 章において行った解析の結果を実線および破線で示した。実験と解析の結果が極めてよく一致していることがわかる。

無次元曲率半径 \(r/L_p \) の減少にともない、イオン電流の無次元極大値 \(j/m \) が減少し、無次元半価幅 \(t_m \) が増加することがわかる。無次元曲率半径 \(r/L_p \) が 1.5 以上では、イオン電流の無次元極大値が無次元半価幅とは共に一定になることがわかる。すなわち、火炎の局所的な曲率半径 \(r \) が無限に大きくなれば、火炎を平面として考えることができ、曲率の影響を考慮する必要がなくなる。本研究で使用した静電探針の束線直径 0.1 mm であり火炎帯の厚さと同程度である。

このような場合、\(r/L_p \) が 1.5 以上の範囲では、イオン電流波形は火炎の曲率の影響を受けなくなるといえ
図10 火炎の局所的な数率半径の変化に起因するイオン電流の極大値、半値幅の変化

図11 火炎の数率の中心の経路と探針の受感部との距離の変化に起因するイオン電流の極大値、半値幅の変化

6. 結論

静電探針を用いて高強度乱流予混合火炎の微細構造の計測を行う場合、イオン電流波形を火炎の局所的な曲率の影響を受けたと考えられる信号がしばしば観察される。このような波形を適切に解析すれば、高強度乱流予混合火炎の微細構造をよりはっきりと明らかにすることが可能になると考え、火炎の局所的な数率および火炎が探針を通じてする際の間の火炎の数率の中心の経路
と受感部との距離がイオン電流波形におよぼす影響を調べた結果、以下に述べるような結論をえた。
（1）火炎の局所的な数率あるいは火炎が探針を通じた際の経路の変化により、イオン電流波形は著しく変化する。
（2）静電探針を通じた火炎の局所的な数率半径が探針の受感部の長さより長い（1.5Lp）の場合、火炎の曲率の影響は無視できる。
（3）無次元数率半径Lp/Lp<1.5の範囲では、曲率半径が減少すると、イオン電流の極大値は減少し、半値幅は増加する。
（4）火炎の曲率の中心の経路と探針の受感部との距離が変化すると、火炎の数率半径が同一である場合、イオン電流波形は著しく変化する。このような場合、δrが増加すると、イオン電流の極大値は減少し、半値幅は増加する。

文献
（5）児宮, ほか2名, 機論, 35-320, B(1989), 3758-3765.
（10）Chew, T. T., ほか2名, Combust. Flame, 80(1990), 65-82.
（14）河本, ほか3名, 機論, 55-512, B(1989), 1221-1228.
（15）満田・満本, 機論, 55-325, B(1990), 823-829.