Fundamental Studies on the Control of Turbulent Boundary Layers (Controls of Turbulent Boundary Layers on the Porous Convex Curvature Surfaces with Uniform Suction or Injection)

Hajime YAMAGUCHI

The effects of controls of turbulent boundary layers on the porous convex curvature surfaces with suction or injection are analyzed by experiments and numerical calculations. In the experiments, velocity profiles and some turbulent characteristic profiles are measured for respective conditions of assorted items of three kinds of convex curvature and three varieties of suction and injection. Then, for the corresponding experimental conditions, the development of turbulent boundary layers is estimated by numerical calculations as compared with the experimental data. The accuracy of estimated values by use of two types of Reynolds stress models by Launder, Reece and Rodi; i.e., high and low Reynolds number types, are compared and evaluated. Finally, the effects of the pile up of conditions; i.e., convex curvatures, suction or injection and adverse pressure gradients are calculated numerically, and some effects of involved conditions are clarified.

Key Words: Boundary Layer, Turbulence, Velocity Distribution, Numerical Analysis, Convex Curvature, Suction, Injection, Reynolds Stress Model

1. 緒 言

既報(14)の曲面乱流境界層に関する研究の一環として、凸曲率の乱れの安定効果に基づく境界層の発達に向けた吸込みによる境界層制御を試み、その効果を変数数値計算によって解析した。また、凸曲率面はターピン翼などの翼の背面流路に存在することから、圧出冷却を目的とした吹出しによる境界層の発達への影響を把握するため同様な解析を試みた。実験では平板乱流から流入の乱流境界層に凸曲率流路面のポーラス壁より一様吸込み・吹出しを設定し、乱流境界層発達への影響を速度分布形状、乱れ強度、レイノルズ応力などの乱流特性分布の取得により考察した。さらに、前報(47)の解析手法を適用し、実験条件に対応した数値計算を行い、実験データとの比較から乱流境界層の発達の見込み解析精度を評価した。解析に使用した乱流モデルにはLauder-Reece-Rodi(49)(以下LRRと略)による高レイノルズ数形応力方程式モデルを採用した。特に粘性の影響が著しい壁面近傍の区間に吸込み・吹出しを組み込んだvan Driest形(50)の乱流粘性の減衰関数を導入した理論速度分布(7)を付加し高い見積もり解析精度を確保した。

一方、応力方程式モデルは計算機の性能向上などに伴い工学的に重要性が増大するなかで、普遍性を確保することを含めて境界条件の制御により解される、低レイノルズ数形モデルの開発が必ずしも考えられる。しかし、凸曲率、吸込み・吹出しなどの複数の条件が重なった場合への低レイノルズ数形応力方程式モデルの適用は、すでに提案されているモデル(50)を含めて皆無である。そこで、高レイノルズ数形モデルによる計算(49)では省略したLRRモデルの再分配項のうち、壁面近接効果項および粘性拡散項を復活させ、さらに減衰関数を乱流輸送方程式の主要項に乗りることで壁面近傍の粘性効果を表現し、低レイノルズ数形モデルの取扱いによる見積もり計算を試みた。結果は、時間平均特性の場合には高レイノルズ数形の程度の精度は得られたが、乱流特性に関しては検討が必要なことが示された。低レイノルズ数形モデルの場合、解析精度の成否は特に壁面近傍の粘性効果を示すモデル式に強く依存するため、まず凸曲率、吸込み・吹出しによるレイノルズ応力輸送への影響に関するデータの蓄積が必要である。
面近傍の粘性効果の及ぶ領域に理論速度分布を補充する本報の方法は、現実的で実用的な解析方法と判断できる。

次に凸曲率と吸引・吹出し、逆圧力こう配の3条件を組合せた場合、前報の曲率と逆圧力こう配の重ね合わせ条件で結果のように現象効果が予測できるのか、ついで、高レイノルズ数形のLRRモデルによる境界層特性の見極め計算結果より考察。その際、凸曲率流速部分における逆圧力こう配の定義値には、前報と同じど $dP/ax=0.267$ 4m$^{-1}$ の条件を適用した。

記号

c_f: 壁面摩擦係数 $=2n/(\rho \cdot u^2)$ (n: 壁面摩擦応力)
H: 速度分布形状係数 $=\delta^* \cdot \theta$
k: 曲率 $=1/Re$ (曲率半径) $=h+kv$
P_0, P_{20}: 基準位置 ($x=700$ mm) 壁面静圧、主流圧
c_p: $(P_0-P_{20})/P_{0}$ 壁面静圧 ($x=700$ mm) 壁面静圧)
u, v: 壁面からの距離、壁面より法線方向の距離
δ^*, θ: 壁面厚さ、壁面厚さ、運動量厚さ

2. 実験条件

実験装置の概要を図1に示す。特に、凸凹曲率面からの一様吸引力・吹出しが可能など、変曲面にステンレス繊維を圧縮成形したポーラス板材(日本製繊布製ナスロン NF-08)を使用、流路幅一定により曲率流入部で圧力急減少が存在、凸曲率壁面全域で吸込み・吹出し速度比が一定となるよう壁面内側の空気室を流れ方向の壁面静圧分布の状態を考慮し3室に区分、二次流れ低減のため流路の緩衝板は4を確保。さらに凸曲率流路面 $\phi=0, 90$ の2位置の上・下壁のスリットによりエンドウォールジェットを設定、流路条件は凸曲率半径3種類のそれぞれに、吸込み・吹出し速度比を組合せてで定める。表1。}

3. 数値計算

3.1 座標系 平板流路を初期値として一定流速

率流路下流に至る間の非圧縮・定常・二次元、吸込み・吹出しのある乱流境界層の変化を模倣するために直交曲線座標系（図1）を適用する。

3.2 基礎方程式 y方向の運動方程式をポテンシャル領域に導入して得られる圧力こう配を用い、直交曲線座標系表示に運動方程式、連続の式を示す。

$$
\frac{Du}{Dt} = \frac{\partial}{\partial y}(uh + v) - hu \frac{\partial v}{\partial y} \\
- \frac{\partial}{\partial x}(2u + v) + \frac{k}{h} u - kuv \\
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
$$

実質微分の直交曲線座標系表示は $D/Dt = u(\partial/\partial x) + h(\partial/\partial y)$ で表される。式(1)のレイノルズ応力成分の表現は、曲率流路の解析においてこう配微分形では本質的な問題が残ると判断し，

$$(Du/DCB) = P + \phi = \varepsilon_0$$

生産項 再分配項 散逸項 括弧内項

(3) 式で表示される乱流輸送方程式をモデル化した応力方程式モデルを採用する。実際には前報1と同様 LRR 高レイノルズ数形応力方程式モデルを適用した場合と、低レイノルズ数形モデルとして対を設けた LRR 模型を適用し、見極め計算精度について比較した。式 (3) に対しては右辺の各項のうち生産項を除きモデル化が必要である。再分配項は前報1までの高レイノルズ数形モデルでは、流れの非線形相関に関する ϕ_0 項と、平均流の速度こう配が関与する ϕ_{u} 項に分けたもの。
乱流境界層の制御に関する基礎研究

式中の諸係数は高・低レイノルズ数モデルとも共通に、それぞれ次の値を採用する。

\[c_1 = 1.8, \quad c_2 = 0.6, \quad c_3 = 0.18 \]
\[c_4 = 0.22, \quad c_5 = 1.45, \quad c_6 = 1.9 \]

3.3 計算方法 レインノルズ方程式 (1)，およびモデル化された各種乱流輸送方程式 (6) ～(10) はすべて次式で表される放物型微分方程式である。

\[\frac{D\theta}{Dt} = \frac{\partial}{\partial y} (B \phi \frac{\partial \theta}{\partial y}) + d \phi \]

\[\phi \] は、レイノルス方程式では \(u \) を表し、また輸送方程式においては \(w^2, \frac{1}{2}w^2, \frac{1}{2}u^2, \frac{1}{2}v^2 \) を代表する従属変数で、\(B \) は拡散項、\(d \) は生産項、拡散項、再分配項の総和を代表する。したがってこれら諸式を連立させて差分解法により数値計算を行うのに、Patankar-Spalding法が適用できる。

なお、特に LRR 応力方程式モデルを低レイノルズ数形モデルとして取扱うにあたり、具体的な計算では壁面近傍の粘性効果の補正に、下記式 (11) で表される van Driestの壁面補正関数を、壁面近傍の粘性効果による減衰が顕著な項の集積である \(d \) 項全体に乗じることで対処した。

\[f(\gamma) = (1-\exp(-\gamma/A^2))^2 \]

ただし、\(\gamma \)：無次元距離（= \(u \nu / v \)）、A：減衰係数

以下の計算にあたっての具体的な要項を示す。

（1）流れ関数 \(\psi \) を導入して式（2）を満たし、さらに無次元流れ関数 \(\omega = (\psi - \psi_0) / (\psi_1 - \psi_0) \) を用いる。

（2）0 ≤ \(\omega \) ≤ 1 を、高レイノルズ数形：\(i = 1 \sim N(N = 81) \) の \(\omega \) を等分割、低レイノルズ数形：壁面近傍を細かく、境界層の外端に近いほど粗い間隔設定して、合わせて \(i = 1 \sim N(N = 94) \) に \(\omega \) を分割する。流れ方向への刻み幅 \(\Delta x \) は状況に応じて変化させる。完全乱流域での初期値（\(x = 700 \)mm の実験値）を使用し前進差分で順次下流へ計算する。

（3）境界条件

(i) 境界（高レイノルズ数形モデル）：格子点 \(i = 1 \) の壁面での条件。ただし、格子点 \(i = 2 \) (以下添字 \(s \)
4. 実験結果と計算結果の比較

4-1 境界層特性値に及ぼす曲率、吸込み・吹出しの影響

凸曲率流路の場合、$v_u/u_{w_{a}} = 0, \pm 0.004$ の 3 種類の吸込み・吹出しが境界層の発達にいかに影響を及ぼすかを確認するため、曲率半径：R ごとに $v_u/u_{w_{a}}$ による境界層特性値への影響の比較を図 2(a) ～(c) に示した。結果は、$v_u/u_{w_{a}} = 0$ において同一距離の比較では、曲率半径が大きいほど境界層の発達は前進し、同一角度の比較では曲率半径が小さいほどわずかに発達傾向の進展が確認できるなど、前報[40]での解析結果と一致する。一方、吸込みの場合は同一距離、同一角度どちらの比較とも曲率半径が小さいほど境界層制御効果が優勢で、境界層の発達は後退する。吹出しの場合、同一距離の比較では曲率半径が大きいほど発達傾向は顕著に、同一角度の比較では曲率半径が大きいほどわずかに発達傾向は進行する。さらに各曲率半径とも吸込みによる境界層制御効果は顕著で、逆に吹出しは著しく境界層を発達させ、急激にはく離へと追い込む傾向が確認できる。

実験条件に対応させて、図 2 には乱流モデルを採用した見積もり計算結果を併記した。計算には LRR 応力方式モデルを高・低レイノルズ数形に従って適用し、両者の見積もり精度を比較した。初期条件には $x = 700 \text{mm}$ の実験分布を使用し、結果は曲率開始部における吸込み・吹出しの設定に伴う境界層の急激な変化を含め、全体的に実験分布の動向に沿って追従した見積もりが得られた。なお高・低レイノルズ数形の比較では両者の応力が判断できるほどの見積もり分
4-2 速度分布形状

（1）対数速度分布 図3に\(R=500 \, \text{mm} \)の各\(\nu_{0}/\nu_{w} \)に対する対数速度分布の流れ方向の推移を実験と見積もり計算との比較で示した。実験分布の推移では、初期分布（\(x=700 \, \text{mm} \)）からの変化は、吸込みの場合と比較し、特に吹出しの場合に顕著で、\(\nu_{0}/\nu_{w} = 0 \)の凹曲率のみの条件での境界層の推移と比較して急激な発達傾向が確認できる。実験分布の挙動に対して、LRRモデルによる見積もり計算分布では、吹出しの場合も\(\phi=80^\circ \)までの実験分布との一致は良好である。特に底層から内層領域にかけて、高レイノルズ数形が低レイノルズ数形よりも実験分布を精度よく見積もっている。さらに\(\phi=120^\circ \)では実験分布よりも計算は発達を遅れ気味に見積もりしている。特に低レイノルズ数形の場合にはこの傾向が強い。

（2）無次元速度分布 図4に\(R=500 \, \text{mm} \)、\(\phi=80^\circ \)、\(\nu_{0}/\nu_{w} = 0, \pm 0.004 \)についての\(u/u_{x}, y/\theta \)分布を、実験分布と高・低レイノルズ数形による見積もり分布とを比較して示した。実験、見積もりいずれの分布からも、吹出しによる境界層の発達の顕著な傾向が見られる。ただし、見積もり分布では高・低レイノルズ数形モデルの相違に基づく精度を判定するほど明確な傾向は確認できない。

以上、時間平均特性についての見積もり計算において、LRRによる応力方程式モデルを基本的に踏襲しての結果であることを考慮すれば、高・低レイノルズ数形モデルのいずれも比較的良好な見積もり精度と評価できる。特に高レイノルズ数形は\(i=1 \sim 2 \)に、吸込み・吹出しの効果を含む減衰係数を適応した理論速度分布を補うことで、本報でのどの条件についても境界層特性値、分布形状ともによい見積もり精度を得た。低レイノルズ数形はLRRモデルに粘性効果項を加え、減衰関数を適応した補正したモデルにもかかわらず、複数の条件設定に対して高レイノルズ数形に匹敵する解析精度が得られたことから、さらに実験データの蓄積に基づく基本的なモデルの開発に展開すべき方向性が示されたと判断できる。

以上の状況を踏まえ、以降の見積もり計算においてはLRR応力方程式モデルを高レイノルズ数形として適用し、実験分布との比較により見積もり精度の評価を行うこととした。

4-3 乱れ特性 図5～7に\(R=500 \, \text{mm}, \phi=80^\circ \)（\(x=1749 \, \text{mm} \)の乱れ特性の実験分布、ならびに対応する見積もり分布を比較する。さらに\(R=300 \, \text{mm} \)での\(\phi=80^\circ (x=1469 \, \text{mm}) \)および\(x=1749 \, \text{mm} (\phi=133.5^\circ) \)の計算分布を提示することを、曲率の違いによる同一軸方向（\(\phi=80^\circ \)）、同一距離（\(x=1749 \, \text{mm} \)）での影響を明らかにする。
乱れ強度分布の比較を示す。実験分布と見積もり分布との対応は良好で、さらにφ一定、x一定条件での曲率による影響も妥当な傾向として算出されている。吸引によりいずれの乱れ分布も壁面近傍ではあまり変化はなく、特に内層から外層においての変動が顕著だ。吹出しの場合も壁面近傍の値はv/u pedestalにおいてあまり変化は認められず、内層～外層において乱れ強度が付加された傾向を示す。吸引・吹出しによる乱れの特性の推移は乱れエネルギーの輸送式中の各項の平衝条件に拘束された動きと考えられる。例えば吸引による壁面せん断力の増加は境界層の発達を後退させ、内層～外層においての速度分布形状の速度傾斜を減少させる。これに伴い図5に示すように乱れエネルギーの生産はこの領域で減少する。以上の結果として乱れ強度分布の推移が成り立つと判断される。

レイノルズ応力分布の図7はレイノルズ応力分布で図5と同一条件の設定で、実験分布と見積もり分布を比較し、良好な一致を示っている。曲率、吸引・吹出しによる影響は乱れ強度分布と同様な傾向が得られ、特に吸引による内層～外層にかけての応力の減少傾向は顕著である。見積もり精度は、乱れ強度分布ほどには実験分布との一致は得られなかったが、ほぼ満足すべき精度と判断できる。

以上見積もり計算結果はLRRモデルの高レイノルズ数形モデルの適用で、境界層特性、速度分布形状、乱れ特性いずれも実験分布を良好に算出しており、実用性は十分確認できる。なお、低レイノルズ数形モデルで試算した乱れ特性の見積もり精度は、本来高レイノルズ数形と比較して改善されるべき壁面近傍において劣る結果が認められた。

5. 凸曲率、吸込み・吹出し、逆圧力こう配の
条件の組み合わせによる見積もり計算

5.1 条件の設定
4章までにLRR高レイノルズ数形応力方程式モデルの適用の妥当性を確かめた。よって以下はこのモデルを適用して、凸曲率、吸込み・吹出し、逆圧力こう配の3条件を組み合わせた流れの設定に基づく乱流境界層の推移の見積もり解析を試みる。具体的な条件は凸曲率半径：R=∞(平板)，500，300，210 mmの4種類、吸引・吹出し速度比：v/u pedestal=0，±0.002、±0.004の5種類、逆圧力こう配の値は前報に記載したdcp/dx=0.2674 m⁻¹を使用した場合と、圧力こう配なしの場合をそれぞれ組み合わせて設定した。見積もり計算結果による諸条件の影響についての評価は境界層特性値を対象とする。なお4章までは初期値をx=700 mmとしたが、本章では前報での逆圧力こう配の条件がそのまま適用できるx=1000 mmを採用する。

5.2 見積もり計算結果による評価
(1) 計算結果の比較
計算結果の比較を曲率半
径ごとに、u_0/t_w、圧力こう配をパラメータとして図8に、またu_0/t_wごとに、曲率半径、逆圧力こう配をパラメータとして図9にそれぞれ示した。これら2種類の比較により個々の条件、および組合せ条件による境界層の発達への影響について考察する。比較の対象としては境界層特性値のうち特に形状係数Hの動向に着目して、境界層の発達状況を評価する。摩擦係数c_fは、例えば吹出しの場合のように境界層が発達した状況下では極めて微小な値となり、発達過程の微妙な変化を把握し評価するには適当ではない。しかし、形状係数HもH^*/Hによって算出されるため、個々の特性値の推移によっては境界層の発達状況を特定するには、特に吹出し条件においてHが大きくなるような場合には極めて不安定となることも考慮する必要がある。

(2) 計算結果の評価
(1) 逆圧力こう配のない場合 図8、9より、$u_0/t_w=0$では、同一距離での比較では曲率半径が小さいほど境界層は著しく発達する。同一距離の比較では曲率半径が小さいほど発達は進行する。また吸込み、吹出しに応じて境界層の発達は顕著に変化する。吸込みよりも吹出しのはが、同一距離の比較では、曲率半径の減少に伴う境界層の発達傾向は顕著である。同一角度の比較では、吸込み、吹出しともに曲率半径が小さいほど発達はわずかに進行する。ただし吹出しの場合には、吸込みの場合よりどの曲率半径でも境界層が発達した状況となる。

(ii) 逆圧力こう配がある場合 逆圧力こう配による境界層の発達への影響は、流路距離に関与するものの推察できる。図8、9より、$u_0/t_w=0$の場合、同一角度の比較では曲率半径が大きいほうが逆圧力こう配による境界層の発達は進行し、圧力こう配がない場合とは逆になる。しかし、同一距離の比較では、圧力こう配がない場合と同じく曲率半径が小さいほうが発達は進行する。すなわち逆圧力こう配により、距離xの増大に伴い急速的に境界層は発達する。よって曲率半径が大きい場合は、Rが小さい場合と同一角度では距離が増大し、境界層の発達は進展する。結局、凸曲率と逆圧力こう配の個々の影響の和以上に条件の重ね合わせによる境界層の発達への効果が表現される。
また、吸込み・吹出しによる影響について比較してみる。例えばR=500mm, $v_0/t_{c_{rpm}}=0.004$, 逆圧力こう配の組合せによる境界層の推移は、下流で極端に発達、はく離に至っている。前報の凸曲率と圧力こう配の相乗効果を大幅に上回る発達傾向を示す。R=300, 210mmについては同様な傾向が認められるが、R が小さい場合には下流でもxの値は増大しないため、逆圧力こう配の効果が十分発揮できず、R=500mmほど極端な傾向には至らない。このことはR=500mmより大きい（曲率は小さい）場合、下流でのxが大きくなることから、逆圧力こう配、吹出し方向が本報の条件と比較して小さくても、3条件の重ね合わせによる相乗効果が顕著となり、境界層の発達への影響は無視しえなくなるものと推察できる。

一方、逆圧力こう配がなければ吸込みによって境界層は発達傾向を後退し、$v_0/t_{c_{rpm}}=0$と同様に同一角度の比較ではRが小さいほど境界層は発達する。また同一距離の比較でも同様の傾向がある。しかし、同一角度の比較では、逆圧力こう配がある場合には逆転し、R が大きいほど下流での流路距離xが増し、境界層の発達が確認できる。ただし3条件の相乗効果は、特に吸込みは境界層を後退させることから、吹出しのような状況は認められず、いずれのRについてもほぼ一様な吸込み効果が得られた。

6. 結論

凸曲率流路ポーラス壁面からの一様吸込み・吹出しによる乱流境界層の制御効果について、実験ならびに数値計算により系統的に解析を試みた。さらに逆圧力こう配の条件を加え、乱流境界層に及ぼす条件の重ね合わせによる影響について評価した。本報で得られた主な結果を以下に示す。

（1）各曲率半径ともに吸込み・吹出しによる境界層制御効果が顕著で、特に吸込みの場合は曲率半径が小さいほど優位で、境界層の発達を後退させる。

（2）Launderらの高・低レイノルズ数形応力方程式モデルによる見極まり精度の比較では、時間平均特性、乱流特性を総合的に評価して、高レイノルズ数形の優位性を示した。

（3）高レイノルズ数形モデルにより乱流特性の吸込み・吹出しの制御効果が精度よく見極められたことで、$i=1\sim2$区間に理論速度分布を補う。本報の解析方法の妥当性が確認された。

（4）高レイノルズ数形モデルを用いた凸曲率、吸込み・吹出し、逆圧力こう配の3条件を組合せた場合の見極め結果より、個々の条件による影響を重ね合わせた以上の、相乗効果が示された。

（5）逆圧力こう配は、距離xが大となるのに伴い急速に境界層を発達させる。よって曲率半径Rが小さい場合よりも、Rが大きい場合は、同じ角度の位置ではxが大きいことから、境界層の発達は進展することを示した。

文献

（1）山口、機論、53-489B(1987), 1505。
（2）山口、機論、55-509B(1989), 67。
（3）山口、機論、55-519B(1989), 3348。
（4）山口、機論、56-528B(1990), 2275。
（5）Lauder, B. E., Reese, G. J. and Rodi, W., J. Fluid Mech., 68-3(1975), 537。
（7）山口・ほか3名, 機論, 46-404B(1980), 564。
（8）島, 機論, 54-505B(1988), 2317。
（9）山本・ほか2名, 機論, 56-522B(1990), 460。
（10）Daly, B. J. and Harlow, F. H., Phys. Fluids, 13(1970), 2634。
（11）Hanjalic, K. and Launder, B. E., J. Fluid Mech., 52-4(1972), 609。
（12）Gibson, M. M., ほか2名, Phys. Fluids, 24-3(1981), 386。
（15）高沢・ほか3名, 機論, 49-441B(1983), 954。
（17）Kays, W. B., ほか3名, J. Heat Transf., 92(1970), 499。
（18）Cebeci, T., AIAA J., 11(1973), 237。