高比速度斜流送風機の低流量域内部流れ*

金子賢二*1，村岡昭男*2
塩見憲正*3，瀬戸口俊明*1

Internal Flow of High-Specific-Speed Diagonal Flow Fan in Low Flow Range

Kenji KANEKO, Akio MURAOKA,
Norimasa SHIOMI and Toshiaki SETOGUCHI

In order to clarify the mechanism of the occurrence of unstable characteristics of a high-specific-speed diagonal flow fan, detailed measurements of the internal flow fields ahead of and behind the rotor were performed using a hot wire probe. The behavior of the flow fields in the low flow range including rotating stall was mainly investigated and the characteristics of the rotating stall, namely, the rotational speed of the stall cell, the number of cells and the cell distribution were analyzed. The effects of tip clearance on the unstable characteristics and internal flow fields were also discussed based on the measured results.

Key Words: Fan, Diagonal Flow Fan, Internal Flow, Unsteady Flow, Rotating Stall

1. まえがき

斜流送風機は轴流式に比べ作動範囲が広く低騒音であり、さらに遠心式より高い効率が期待できるなど優れた特徴を持つ。ところが、比速度が高くなると圧力一流量特性が低流量域で、軸流式に類似の顕著な右上がり不安定特性を示す。軸流圧縮機や送風機の場合、不安定領域で旋回失速が生じて動翼の振動など危険な影響を及ぼすので、過去に多くの研究がある。しかし、高比速度斜流送風機の低流量域内部流れを旋回失速に伴う非定常流れに関する研究はほとんどされていない。

著者らはこれまで高比速度斜流送風機の不安定特性改善の研究を進めてきた1) 4)。さらに効果的な改善法を開発するためには、低流量域不安定特性のメカニズムを内部流れの観点から検討する必要がある。

本研究では、低流量域における旋回失速を含む動翼前後の流れ場を熱線流速計を用いた測定により明らかにするとともに、高比速度斜流送風機の旋回失速の特性を解析した。動翼先端隙間が不安定特性及び内部流れ場に及ぼす影響も検討した。

2. 主な記号

D: 直径(m)

n: 周速度(rpm)

n_r: 比速度

p_t: 送風機全圧(Pa)

Q: 送風機流量(m^3/min)

T: 軸トルク(N·m)

TC: 動翼先端隙間

u*: 十字速度(2 m/s)

V_m: 旋回速度(m/s)

η: 送風機全压効率η = φ / 1 - λ

λ: ハブ比(静翼位置)

ρ: 空気密度(kg/m^3)

τ: 軸向力係数 = 8πT/(15 ρ D^2(1 - λ^2)u^*^2)

φ: 流量係数 = Q/(15g D^2(1 - λ^2)u^*)

ψ: 重圧係数 = p_t/(0.5 ρ u^2)

ω: 動翼の角速度(rad/s)

* 原稿受付 1995年3月12日
*1 正員、佐賀大学理工学部(〒840 佐賀市本庄町1)
*2 佐賀大学大学院
*3 学生員、佐賀大学大学院
３．実験装置及び実験方法

供給流体の概要を図1に示す。本供給流体は比速度1620(rpm, m³/min, m)の高比速度形でありその主な要目を表1に示す。動翼にはNACA65系の羽根、静翼には円弧翼を用いた。その仕様を表2に示す。動翼は準三次元設計法により設計された。その際、翼素選定は二次元翼列資料(13)を基に、それを斜流流路に適用するため翼の反りを理論的に修正する方法(14)を用いた。静翼の翼素選定は円弧翼の翼列資料(15)に基づいて行った。

本研究では低流量不安定域での非定常流れを対象とするので、特に装置の寸法精度に注意を払い、動翼はNCAフィラスによるアルミ一体成形し加工を行い、ケーシングはアルミ製で真鍮加工により製作した。

動翼先端とケーシング間の隙間TC=0.5mmから5.0mmまで変化させ、送風機性能及び内部流れ場への影響を調べた。

送風機性能試験はJIS8330に基づき行われた。段性能はクト損失及び回転軸摩擦トルクを差し引いて示されている。

内部流れ測定は通常の1形及び45°傾斜熱線プローブを用いて行った。1形プローブは主に動翼前後の旋回失速を伴う非定常流れの測定に、傾斜プローブは周期的外乱及び周期的に抽出法(16)による動翼後端の周期的流れ場の測定に用いた。熱線流速計の出力はマイコン処理するとともにFFTアナライザーで解析した。

動翼先端周速度と翼弦長に基づく試験レイノルズ数は4.8×10³である。

４．実験結果と考察

4.1 送風機特性 図2に4種類のTCに対する送風機特性試験結果を示す。縦軸に全圧係数Φ、全圧効率η及び軸動力係数τを、横軸は流量係数φを表して

<table>
<thead>
<tr>
<th>Table 1 Specification of test fan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total pressure coefficient</td>
</tr>
<tr>
<td>Flow coefficient</td>
</tr>
<tr>
<td>Specific speed</td>
</tr>
<tr>
<td>Angle of casing</td>
</tr>
<tr>
<td>Angle of hub</td>
</tr>
<tr>
<td>Hub ratio (at stator)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2 Specification of rotor and stator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade section</td>
</tr>
<tr>
<td>Number of blade</td>
</tr>
<tr>
<td>Mean solidity</td>
</tr>
<tr>
<td>Mean aspect ratio</td>
</tr>
<tr>
<td>Mean chord length</td>
</tr>
<tr>
<td>Vortex design</td>
</tr>
</tbody>
</table>

Fig. 1 Outline of diagonal low fan

Fig. 2 Characteristics of test fan

いる。

T C=0.5mm及び1.0mmの場合、設計点より流量を拡げていくとφ=0.2近傍で失速のため圧力係数の急激な降下がみられる。低流量域でのこの様な圧力−流量特性は、一般に右上り不安定特性と呼ばれ送風機の作動上好ましくない。

T C=2.0mmになると、圧力特性の突端点が図のように丸みを持ちともに右上がり勾配が緩くなる。さらにT C=5.0mmと過大になると、右上がりの不安定特性はなくなくなる。なお、T C=0.5mmの場合のみ、失速点近傍で圧力特性曲線に図中に示すようなヒステリシスが観察された。

T Cが比較的小さい場合（T C=0.5mm及び1.0mm）、失速点における急激な圧力降下は旋回失速に起因することが前後での内部流れ測定結果により示される。T Cが大きくなると旋回失速は周波失速へ変化するとともに失速点が若干高流量域側へ移動する。T C=2.0mm及び5.0mmでは旋回失速は観察されなかった。T Cが過
大になると先端流れによる動翼先端部のブロックージの増加のため及び扇葉負荷減少のため軸動力係数が低下する。同時に送風機効率も著しく低下する。

なお、本斜流送風機は90％以上の最大効率を示すとともに、低流量域から高流量域まで比較的単純な軸動力特性を示し実用上好ましい特性をもつ。

4.2 動翼入口の非定常流れ 非定常流れ場と旋回失速の特性を明らかにするため、図1に示す動翼入口断面BEF1において熱線プローブをトラバースし、その出力をFFT解析した。この場合、熱線のエレメントを周方向に一致させて測定した。種々のTC及び流量係数に対する熱線出力の時間波形及びパワースペクトルを図3〜図8に示す。なお、時間波形は動翼1回転に対応する時間毎に区切り、それを連続的に並べている。

図3はTC=0.5mm、φ=0.175に対する結果を示す。この流量係数は図2に示す圧力特性曲線の失速後の圧力極小点に対応する。半径位置A、B、Cにおいては、時間波形は図(a)のような不規則な変動を示すか特定の周波数成分は存在しないがスペクトル図よりわかる。この場合、動翼先端環境は失速のため入口側への強い逆流流れが存在することがうかがえる。

一方、ハブ側位置E、F、Iでは時間波形に不規則成分はほとんどなく、図(c)のように規則的な変動を示す。この規則波は動翼通過にともなうボテンシャル効果によるものである。この領域では入口流れは正常であり逆流は存在しない。

図4は図2の圧力特性曲線の右上側のほぼ中央に対応するφ=0.19における時間波形スペクトルを示す。この場合、図(a〜c)に示すように半径位置A〜Dで不規則波形と規則波形が交互に観察され、スペクトル図より39.7Hzの卓越周波数が認められる。これは動翼同軸数51.7Hz（3100rpm）より低く、不規則波群は旋回失速による入口側の逆流の影響によることが明らかである。一方、ハブ側領域E、F、Iでは上記のような不規則な変動波形は見られない。ただし、図4(d)を詳細に観察すると波形の小さな変化が伝播しており、スペクトル図には先端側の旋回失速と同じ周波数のスペクトルが見られる。

図5は失速直前、すなわち図2の圧力特性曲線の極大点に対応する流量係数φ=0.21における時間波形及びスペクトルを示す。この流量係数では旋回失速は存在せず動翼先端位置Aにおいても波形の変化は認められない。ただし、同軸数と同周波数の51.7Hzのスペクトルが立っている。これはケーシングと動翼の心合わせのわずかな誤差の影響が動翼先端付近の流れに現
われたと考えられる。

旋回乱れの特性と非定常流れ場の状況は、TCが0.5m/s、FLGの高さ1.0mmに増してもほぼ同様である。例えば図6は、
\(\varphi = 0.195 \)における時間波形とスペクトルを示す。旋回乱れの回転周波数は39.0HzでTCが0.5mmの場合と
ほぼ等しく、時間波形も図4（a）と同様である。流量係数が\(\varphi = 0.21 \)に増すると図7に示すように旋回乱れ
は消えるが、時間波形の上に小さな乱れが散在しているのか認められる。この乱れは多くの場合動翼の前線が通過する位置近辺で生じている。この乱れ成分の卓越周波数は存在せず、また乱れは動翼前線付近に限ら
される傾向ではなく、従って、これは先端すきままが増したためゆる流れの影響により動翼前部で乱れが起こり始めていると考えられる。

図8はTCが2.0mm、\(\varphi = 0.21 \)における時間波形とスペクトルを示す。この流量係数は図2の圧力特性曲
線の右上り領域のほぼ中央に対応する。図8（a）に示すように動翼前線位置Aでは入口流れは強い乱れ成分を伴うが、特定の卓越周波数成分は存在しないことがわかる。この流量係数では、動翼前線側の表面近傍は乱れのため生じた入口側への逆流流れておおわれていると考えられる。一方、スパン内側に移るにつれて図（b）、（c）に示すように乱れ成分は少なくなり
ハブ位置Fでは乱れは全く無し。

このように、動翼入口の非定常流れ場を送風機特性と関連づけて観察することにより次のことがわかった。動翼前線間隔が比較的小さい場合の低流量域で旋回乱れが発生し、その結果圧力の急激な低下が起こり右
上り不安定特性が生じる。先端隙間が大きくなるにつれてその圧力の急激な低下は緩和されるとともに、旋回乱れは観測領域へと移行する。

4.3 旋回乱れセルの分布 前述の非定常流れ場の
測定結果に基づき旋回乱れセルの分布を求める。まず、
乱れセルの個数を求めるため、図9（a）のように２
つの熱線を動翼入口断面B E F 1 の、Aの位置で円周
方向に \(\varphi = \pi / 4 \) だけ隔てて配置した。図9（b）は
TCが0.5mm、\(\varphi = 0.19 \)の旋回乱れ発生時の上記2熱
線出力の相互相関係数を示す。図より、2つの熱線が受
け取る旋回乱れセル信号の時間遅時は約9.4msであるこ
とのわかった。従って、乱れセルの回転周波数は約40
Hzとなり、図4（a）の旋回乱れのスペクトルの周波
数39.7Hzとはほぼ一致するので、この旋回乱れセル個数は
1個であることがわかる。なお、セルの回転速度は
動翼回転速度の約77%である。

次に、乱れセルの半径分布を求めるが、前述のよう
に時間波形の乱れ成分の有無によりある程度は判定可
4.4 動翼前後の速度分布 本節では主に動翼前後の周期的流れ場の速度分布について述べる。図11にTC=0.5mm, φ=0.345の場合、入口断面B E F Iにおいて動翼の約1.5ピッチにわたりて45°偏斜熱線プローブを用いて周期的点抽出法で測定した速度分布を示す。測定では周方向100分割で各々150回平均して測定値とした。子午面速度V_mは同図（a）のように、スパン方向にはほぼ平坦であるが周方向に周期的変化を示し、動翼前線位置（図中の1.4）で速度のくぼみをもつ。旋回速度成分V_wも同様に周期変動を示すが動翼前線付近でその符号が変わる。これらの周期的変動は動翼前線部の近接、通過によるポテンシャル効果によるものである。

図12はφ=0.19において旋回失速が発生している場合の速度分布である。ただし、同図（a）は旋回失速セルの外側部分の正常な流れ場の速度分布を示す。この場合、失速中にかかわらず採集データの分布は非常に小さかった。図11と比較するとV_mのくぼみが深く、幅が広くなり、同時にV_wの振幅も激しくなっている。これは流速分布が小さいので動翼への側面迎え角が増し、その結果翼通過による動翼直前の流入角変化に伴いV_wの変動が大きくなるためである。

図12（b）は旋回失速セルを含む領域の速度分布を示す。ただし、この図は、一連の採集データの中からセルの境界（前線）が動翼前線位置に一致したデータのみ抽出して作成してある。従って、V_mのくぼみの左側部分はセルの外側部分のそれに相当する。図より、セルの内側では速度分布が不規則な分布を呈していく様子がうかがえる。なお、図10に示したようにセルの前線は動翼先端部だけでなくし分布していないので、図12（b）のように速度分布の傾斜は先端部に限定される。特に、V_wの分布図より、セルの内側では旋回速度成分が激しい上向きに分布されており、旋回失速はこのような強い旋回速度成分を伴う逆流れを動翼先端部に引き起こす。これが压力特性を低下させ、左上がり不安定特性を生じさせる主な原因である。
因である。
さて、前述のように図12は周期的多点抽出法により測定した結果である。周期的多点抽出法の適用は、規則的な周期変動流れを前提とするので、失速セルの様に不規則な速度変動を含む流れ場はこの方法では測定困難である。事実、図12（b）を求める過程で平均値に対する分散が大きく、また結果に不自然な部分があることも認めめた。従って、図12（b）は必ずしも失速セル部分の速度分布を正しく表わしているとは言えないと、少なくとも定性的な状況は示していると考える。

図13は動翼出口断面A F T 1における速度分布を示す。同図（a）は旋回失速時（θ = 0.19）の速度分布を示す。動翼先端部でのV_{m2}の低下が著しく、同時にはV_{s2}も先端部で高くなっている。これは動翼先端部における失速セルのブロックージ効果によると考えられる。出口流れ場のF P T解析の結果、人口に見られたような卓越周波数は存在しなかった。従って、動翼人口の旋回失速セル分布は動翼を通過する間に一様化すると推察される。

図13（b）は失速直前、すなわち圧力極大点（θ = 0.21）における速度分布を示す。V_{m2}分布にはウェーブを表す速度の増加、その両側、先端付近に幅の広いぼかしが見られる。一方、V_{s2}分布にはウェーブを示す山脈、その両側に大きな傾斜の山が生じている。これは翼端隙間によるもう一滴が巻き上がって口に出たための影響が現われたものであり、渦のブロックージによるV_{m2}の低下、及び動翼下渦が随伴することによるV_{s2}の増加を示している。

5. 結論

高比速度斜流送風機の低流量域不安定特性のメカニズムを解明するため、動翼前後の非定常流れ場を熱線流速計を用いて計測しその結果を検討した。得られた主な結論は次のように要約される。

（1）本斜流送風機では、動翼端部すきまの比較的小さいうちのみ低流量域で旋回失速が発生する。この旋回失速により圧力の急変下が起こり、その結果、圧力一流量特性曲線は右上がりの急勾配をもつ不安定特性を示す。

（2）動翼前端隙間が比較的大きくなると旋回失速は全体失速へと変し、上記圧力特性曲線の右上がり急勾配が緩やかになるとともに、圧力極大点での圧力変化が緩やかになる。

（3）本送風機の旋回失速セルの数は1個である。また、人口断面における失速セルの分布を示す。

（4）本送風機の旋回失速セルは動翼の回転速度の約77％で動翼と同じ方向に伝播する。

（5）低流量域における動翼前後の流れ場を明らかにした。

終わりに、本研究の実行に協力された渡辺虎、白石健一、日高豊の諸氏に感謝の意を表す。また、本研究は広島記念財団の研究助成の下に行われたことを記し、ここに感謝の意を表する。

文献

（1）今子・ほか3名。低負荷翼形斜流送風機の研究。機論、52-473。B1(1986)，387-389。

（2）今子・ほか3名。高比速度斜流送風機の低流量特性改善に関する研究。機論、54-505。B1(1988)，2459-2464。

（3）今子・ほか3名。エアセパレータを有する斜流送風機の性能。ターボ機械、18-4(1990)，206-211。

（5）生井・ほか4名。NACA65系列圧縮機翼列カービット線図の改善と最適化。ターボ機械、2-5(1974)，444-450。

（7）生井・ほか2名。円弧翼翼列の設計法。ターボ機械、2-2(1974)，17-22。

（8）井上。熱線による三次元流れ場の計測。ターボ機械、10-10(1982)，612-619。