Rotating Stall in Vaneless Diffuser of Large Radius Ratio

Jun MATSUI, Junichi KUROKAWA, Michiharu MINO, Eiji HIROKI and Takaya KITAHORA

Rotating stall in the radial vaneless diffuser with large radius is studied experimentally. The static pressure on the wall and the velocity distribution are measured and analyzed, and the critical flow angle calculated theoretically is compared with the experimental one. Measured velocity distributions show that the existence of reverse flow is closely related to the occurrence of stall. In our study, rotating stall occurs at a much larger flow angle than that in conventional studies. Also, in a wide range of flow angle, a compound pressure vibration of two different frequencies is observed, which shows the steady coexistence of two different types of stall cells. Furthermore, the dimensionless frequency of stall propagations is more strongly dependent on the flow angle than in the conventional cases. These results are due mainly to the large ratio of radius in our diffuser.

Key Words: Rotating Stall, Diffuser, Stability, Internal Flow, Vaneless Diffuser, Unsteady Flow, Diffuser Ratio Ratio, Rotational Speed of Cells

1. 緒 言

遠心ファンの出口に設置された平行壁ベーンレスディフューザにおいて、低流量で流入側が小さい場合には、旋回失速が生じることが知られている。Jansenらは二次元シンチャル流れ解析によって、旋回内向き流れがあるときに流れが不安定となることを示している。すなわち、旋回外向き流れでも、半径方向流れに三次元逆流れが生じれば不安定となる。木下らは壁面境界層流れが内向きになることが旋回失速のきっかけであるとして理論解析から旋回失速発生の予測式を与え、黒崎らは広い範囲の実験から旋回失速発生条件の実験式を得ている。渡辺らは旋回失速発生前後の流れ場の測定から、逆流域の成長と失速発生との関係を明らかにしている。また長島らは実験結果を基に失速セル伝ばの構造を推定し、一方辻本らは二次元シンチャル流れの不安定解析から旋回失速発生条件を推定し、旋回失速発生下での流れの特徴を二次元・非粘性の仮定の下で再現できることを示しているなど、この現象の整理と解析が進められている。

しかし、著者らの平行壁ディフューザで観察された旋回失速現象は、従来の予測式で予測される限界流れ角よりもかなり大きな角度で生じており、また失速の様相も従来よりも報告されているものとは異なっている。そこで、ここでは時間平均流れ場および圧力脈動の測定から、旋回失速の発生機構について基礎的な検討を行った。

2. 記 号

b: ディフューザ流路幅
f: 周波数
m: セル数
r: 半径
U: 羽根車周速
v: 流体速度
z: ディフューザ上壁からの距離
α: 断面の流量平均流れ角$(\tan\alpha = v_r/v_u)$

添 字

i: ディフューザ入口
o: ディフューザ出口
r: 半径方向成分
半径比の大きなペークレスディフューザにおける衝撃性旋回失速

3. 実験装置および測定方法

図1に実験装置の概略を示す。本実験で用いたペークレス平壁ディフューザの入力半径は \(r_i = 125.5 \) mm，出口半径は \(r_o = 600 \) mm であり半径比 \(r_o/r_i = 4.78 \) である。また流路幅は \(b = 18 \) mm であり，遠心羽根車は出口半径 125 mm，羽根数は 20 枚であり，出口幅はディフューザ幅と同一である。羽根車の出入口には金網を重ねてはせることで，断面速度分布のひずみを減らし，入口での流れの沿直方向を改善している。

実験では羽根車回転数を一定に保ち，上流側の別置風機回転数および入口経りを調整することにより，広い範囲の流入角に対して測定を行った。壁面静圧は \(r = 1.10 r_i \) の半径において周方向 3 点で測定し，圧力波形の位相差から失速セルの個数を判定している。また \(r/r_i = 1.10, 1.22, 1.64 \) の半径位置において，三孔ビート管を用いて半径方向および周方向の時間平均速度 \(v_r, v_\theta \) を測定し，幅方向の平均速度分布を求めた。\(r/r_i = 1.10 \) での断面速度分布を流量平均して得られた \(v_r, v_\theta \) から自由渦流れを仮定して，入口 \(r = r_i \) での平均流れ角 \(\alpha_l \) を得ている。

4. 結果および考察

4-1 より脈動の時間変化　羽根車の回転数を 3 000 rpm 一定とし，流量を調節することにより平均流れ角 \(\alpha_l \) を 0 〜 35°の範囲で変化させたときの壁面静圧の変動を測定した。図2にその値を示す。横軸は時間，縦軸は羽根車周速 \(U \) と空気密度 \(\rho \) を用いて無次元化した圧力である。

流量を減少させることにより，\(\alpha_l \) を徐々に減少させていくと，まず \(\alpha_l = 26^\circ \) 付近で壁面静圧に規則的な脈動が生じる [図2(a)]。このとき，円周方向 3 点の圧力波形を比較したところ，その位相差からセル数の 2 と旋回速度が生じていることが確認できた。さらに \(\alpha_l \) を減少させると脈動周波数は徐々に高くなり，変動振幅も増大する [図2(b) (c)]。またはじめ正弦波状の脈動であった網周波が加わって三角波に近づいていく [図2(d)]。このセル数 2 の脈動振幅は \(\alpha_l = 15^\circ \) 付近で最大となり，さらに \(\alpha_l \) が小さくなると減少する。\(\alpha_l = 12^\circ \) 付近では，これまでの脈動に加えて，さらに周波数の低い脈動が生じている [図2(e)]。脈動位相の測定からこの脈動はセル数の 1 の旋回速度であることがわかった。\(\alpha_l \) がさらに小さくなると徐々にセル
半径比の大きなベーンレスディフューザーにおける特異な旋回発生

数1の脈動が卓越する [図2(f)]．その振幅はセル数2の場合の2倍近くに達し、大きな圧力変動となる[図2(e)]．このセル数1の脈動においても脈動周波数は \(a_r \) の減少に伴って高くなるが、\(a_r=5' \) 付近を境として \(a_r \) の減少とともに振幅は小さくなる．また \(a_r \) の減少とともに徐々にセル数2の脈動は消減してセル数1の脈動のみが残り [図2(h)]． \(a_r \) がさらに小さくなると、明瞭な周期変動は存在しない [図2(i)]．

\(a_r \leq 1.5' \) では旋回失速は消減している．

なお、\(a_r \) を 0' から大きくしていた場合にも現象の再現性は大変良好で、脈動現象と流れ角の関係にヒステリシス性は見られなかった．

ここで示したようなセル数の異なる旋回失速が共存する現象は従来あまり報告されておらず、長島らの \(r_0/r=3.0 \) のディフューザーにおいて、ごく狭い流量範囲で報告されているのみである．

4・2 ディフューザ内部の平均速度分布 旋回失速現象と三次元流れの関係を検討するため、図3に断面内の半径方向速度 \(v_r \) の時間平均値分布を示す．図3(a)はセル数2の旋回失速発生直後の状態 [\(a_r=25.5' \)，図2(a)に対応]での速度分布である．縦軸はディフューザ上壁からの距離 \(z/b \) をディフューザ幅 \(b \) で無次元化している．入口付近 \((r/r_1=1.1) \) の下壁側では壁から少し離れた位置で半径方向速度 \(v_r \) が落ち込んでいる．

\(a_r=16.9' \) の状態 [図2(c)] での速度分布を示したものが図3(b)である．セル数2の旋回失速が生じているこの状態では、速度分布にかなりのひずみが生じている．またディフューザ入口付近では \(z/b=1.0 \) 付近で逆流が生じているのに対して、\(r/r_1=1.64 \) の位置では \(z/b=0 \) 付近で逆流が生じている．従来の報告によれば、このように上部の半径方向に交差する逆流が生じ主流が蛇行するのは旋回失速発生直前の状態であるとされているが、本実験では正弦波状の圧力脈動を伴うセル数2の旋回失速が安定的に存在している．

\(a_r=10.1' \) の状態は図2(f)に見られるように、セル数1の脈動とセル数2の脈動とが共存して脈動振幅が著しく大きい状態である．このときの速度分布は図3(c)に示すように分布となり、両側の壁の広い半径範囲で逆流が存在していることがわかる．また速度分布は比較的平らでひずみが少なくており、強い旋回失速によって時間平均流れが一様化されているものと考えられる．

従来、三次元流れの存在は流れを不安定にさせて旋回失速の発生の原因としており、上に示したように本実験の場合にも、流れ角の減少とともに三次元流れ域の大きさが半径方向に徐々に拡大し、失速現象が逆流の状態に密接に関連していることがわかる．

4・3 圧力脈動の周波数および振幅 従来とは異なる旋回失速現象の原因を検討するため、壁面静圧の変動振幅と変動周波数を整理した結果を図4に示す．

羽根車回転数が1000, 2000 および3000 rpm の場合の測定結果を重ねて示してある．

圧力変動は10mmHg 余りが観察されるが、無次元化した変動振幅、変動周波数の流れ角に対する変化の傾向は、ほぼ一致している．変動振幅を表す図4(a)で、セル数2の変動が最大になるのは \(a_r=15' \) 付近であるのに対してセル数1の変動が最も \(a_r=5' \) 付近に現れ、セル数1の脈動のほうがより激しい圧力変動を生じており、その大きさは \(U^2 \) にほぼ比例していることがわかる．

図4(b)では、Jansen の示した無次元周波数

\[Q=2\pi f_{ij}(v_{mi}r_m) \] と定義する．

--- 46 ---
半径比の大きなベーンレスディフューザーにおける特異な旋回失速

(a) Amplitude of the vibration

(b) Dimensionless frequency

Fig.4 Vibration of wall pressure

の形で変動周波数を表している。mはセル数、fは測定された周波数である。ただし、入口の周速で1.10rにおいては自由渦流れを仮定して定める。同aiに対してQは指示値が得られているが、羽根車回転数に関して相互関が成立していることがわかる。なお、ai=5.8°におけるセル数2の脈動では、脈動周波数が不安定であったので、ここでは平均周波数を示してある。

図4(b)より明らかのように、本実験ではaiの減少とともに無次元周波数Qは大きくなる傾向があり、Qはaiに強く依存している。これに対し盛岡の実験[21]では

\[Q = 1.21 \]

(2)

\[Q = 1.16 - \tan \alpha \]

(3)

の2種類の無次元旋回失速周波数が観察されており、どちらの場合もaiのQに対する影響は小さい。

そこでQの物理的意味を検討しよう。Qは変形すると

\[Q = \frac{2 \pi r_0 f}{(u_{w0}/r_0)m} \frac{v_{w0}}{w_0} \]

(4)

と書ける。ただし、u_{w0}=2\pi r_0/m、v_{w0}=v_{w0}r_0/r_0であり、v_{w0}はディフューザ出口における圧力脈動の周方向への（失速セル一つあたり）伝達速度、v_{w0}は自由渦を仮定した場合のディフューザ出口における流体の周速度である。すなわち、流れ角aiの変化に対してQが一定となるような従来の実験結果は、ディフューザ出口において、圧力脈動の周方向への伝達速度v_{w0}と、流体の周方向速度v_{w0}との比が一定であることを示している。このことは、圧力変動の伝達速度がディフューザ出口付近での現象に支配されていることを示唆している。

これに対して、本実験ではQを用いても現象がうまく整理できない。そこで従来のデータを詳細に検討して見ると、ディフューザ半径比を変えた盛岡らの実験では[16]、r_{0}/r_{1}=2.5では上の一実験式(2)、(3)からデータがはずれすることが報告されている。また長島らの実験においても[15]、r_{0}/r_{1}=1.5の実験ではQはほぼ一定となるが、r_{0}/r_{1}=3の実験ではQはaiにより大きく変化している。すなわち従来の実験においても、r_{0}/r_{1}=2.5のディフューザではQはaiに強く依存するといえる。

実際の速度分布が自由渦状になっていないことは考慮すべきであるが、半径比の大きなディフューザでは、ディフューザ出口付近ではなくディフューザ内部の現象が、旋回失速の伝達速度を支配していると考えられる。すなわち、半径比の小さいディフューザでは壁面付近の三次元流れが脈動発生とほぼ同時に外周まで達するのに対して、本実験におけるr_{0}/r_{1}=4.78のような半径比の大きいディフューザでは、aiが減少しても逆流域は外周まで達せず、半径方向に拡大していくだけであることがQを変化させる原因と考えられる。

4-4 旋回失速発生流れ角の理論的検討

本実験装置のパラメータを盛岡らの示した旋回失速発生流れ角の実験式[22]に適用して旋回失速発生の臨界流れ角を求めるとき、ai=28.49/\sqrt{r_{0}/r_{1}}=10.8°となる。ところが4-1節に示したように、本実験では入口流れai=26°付近でセル数2の旋回失速が発生しており、予測式よりもかなり大きな角度で失速現象が発生している。一方、強い圧力脈動を生じるセル数1の旋回失速は12°付近で発生しており、こちらは上の予測角に近い角度となっている。これのことから本実験におけるセル数1の力学的変動は外周側へと伝播する部分の現象であり、セル数2の圧力脈動が旋回失速であるが従来報告されているものとは性質が異なるものであると考えられる。

また、式本らのポテンシャル理論解析式[23]を用いて臨界流れ角を求めるとき、本実験装置におけるセル数2の旋回失速の限界流れ角は31.4°、セル数1では約20.7°となり、どちらも実験値より大きい値となった。

そこで、外向き旋回流理論解析式[24]を用い
半径比の大きなベネレスディフューザにおける特異な旋回失速

て本ディフューザ内の流れを解析した。解析は軸対称
流れを仮定し、 \(r/r_1 = 1.1 \) で上下壁面の境界層厚さ、主流速度、壁面での流れ角等の測定値を初期値とし、下
流方向へ境界層方程式、主流の運動方程式等を積分し
て速度分布の変化を示した。もとこの解析は軸対称
流れを対象としており旋回失速が生じている流れに適
用できないが、定常流が安定化して非定常流に移行
する原因を検討することは可能と考えられる。

解析結果の例を図5に示す。図5で \(\alpha, \alpha' \) は上壁およ
び下壁の両側端における主流の流れ角であり、境界
層が発達して流れが全体を覆った後は同じ値となる。また、\(\alpha, \alpha' \) はそれぞれ上壁面上における流れ角である。
この値が負のときは内向き流れすなわち三次元逆流が生じていることを示す。実験でセル数2の圧力脈
動が観察された入力流れ角25.5°の条件では、図3(a)
で示したように、片側の壁のディフューザ入口付近で
間欠的に内向き流れが発生した。しかし計算では図
6(a)に見られるように内向き流れが生じており、\(\alpha = 20° \) で初めて \(\alpha' < 0 \) となる。これを旋回失速発生
角度とすれば、本解析による旋回失速の発生限界角度
は約20°となり、従来予測式よりも実験の値に近い予
測角度を得ることができた。誤差が大きい原因は、本
解析では2方向の速度分布を1方向モデルでモデル化し
ているため、実験値で与えられる入口速度分布を忠実
には再現できていないことがおもな原因と考えられ
る。

図5(b)は \(\alpha = 16.9° \) の場合の解析結果であり、片面
の壁面の入力付近から \(r/r_1 = 2.0 \) 付近まで逆流が生
じている。実験ではこのとき、下壁の壁面を逆流域
が存在するが観察されている。計算でこれに近い
現象が見られるのは \(11° < \alpha < 14.5° \) の領域であり、例
えば \(\alpha = 12.4° \) の場合（図5(c)）では上側の壁面で同
時に逆流が生じているが、その内向き角度は交互に小
さくなっており、交互に逆流の大きさが变化している
ようすを再現している。

\(\alpha < 11° \) の計算結果では、定常計算が安定となり、
解が振動したり発散したりした。積分条件を大きく変
化させても解はやはり安定であったことから、この
不定性は数値的な問題ではなく方程式そのものの不安定
であると考えられる。このような \(\alpha < 11° \) での結果
は、本実験におけるセル数1の旋回失速発生 \(\alpha =
10.8° \) に比較に対応している。

旋回失速が生じて非軸対称流れとなっている場合の
本解析は物理的根拠が薄弱であるが、実験で観察された
セル数2の旋回失速の領域に限れば、平均速度分布の
変化をある程度再現しているといえる。

また、入口速度分布を一様流と仮定して解析を行う
と、3 \(< \alpha < 9° \) で解が不安定となり \(\alpha < 15° \) の範
囲で内向き流れが生じるという結果が得られた。この
とき限界流れ角は15°となり、セル数1の旋回失速の
発生流れ角に比較的近いが、実験では \(\alpha = 15° \) 付近で
すでに発生した逆流が生じており、ディフューザ内の
流れを良好に再現できているとはいい難しい。なお \(\alpha \leq
3° \) では壁面の三次元逆流は発生せず、実測結果と同様
に安定した流れとなることが判明した。

すなわち本実験の解析手法を用いた限界流れ角の予
測は、入口部の流れの状態に強く依存している。実験
値を初期値として用いた場合には、半径比の影響の
実際の流れの状況が入口速度分布により影響され、このた
め実験値を比較的近い予測限界流れ角を得ることができ
たものと考えられる。

4.5 二つの旋回失速モードの共存 4.1節で示
したように本実験ではセル数1, 2の2種類の旋回失速
が共存する現象が観察された。これらのセル数2の脈動
は、渦辺の示した“pre-stall”状態での圧力脈動50と
の間に、（1）脈動波形が正弦波に近いこと、（2）大き
半径比の大きなベーンレスディフューザーにおける特異な旋回失速

な圧力脈動を生じる旋回失速のセル数とは異なるセル数の脈動であること、（3）逆流域が全域を覆っており、局所的に存在している状態での現象であること、という類似点をもっていることから、“pre-stall”と同様の、局所的な逆流域がある場合に特有の圧力脈動であると考えられる。逆流域の実験では、逆流域がディフューザ出口に達することをきっかけとしてセル数2の“pre-stall”脈動から急激にセル数1の旋回失速へ移行している。しかしディフューザ出口半径が大きい本実験では、流れ角がある程度大きい間は逆流域がディフューザ出口に達ることができず、このため“pre-stall”状態が安定に存続してセル数2の旋回失速になっているものと考えられる。

また、セル数および伝ば速度の異なる圧力脈動が共存していることから、旋回失速発生時のディフューザ内の流れは、辻本らの示した二次元非粘性ボテンシャル流れの不安定に基づく脈動流れとなっている可能性が高い。この場合、おおよその脈動モードは重ね合せることができるのでは、種類の旋回失速流れが干涉することなく共存できる。ただし、この理論計算法を用いてセル伝は速度を求めるとき伝は速度が負となるなど、定量的にはかなりの違いがある。

このような共存状態での流れは旋回失速の基本的な性質を理解するうえで重要であると考えられる。詳細な解釈は今後の課題である。

5. 結論

入口出口半径比の大きなベーンレスディフューザーにおいて、従来おもに報告されているものとは性質の異なる旋回失速現象が確認された。その特徴は、流れ角αに依存して無次元脈動周波数Ωが大きく変化すること、二つの異なるセル数による脈動が共存する領域があること、セル数2の旋回失速は、従来の実験式による失速限界角よりもかなり大きな流れ角で発生することである。このような特徴は主として半径比の大きいことに起因しており、従来の半径比の小さい実験では出口での流れの急変の影響で安定に存続しない流れが生じているものと考えられる。

最後に、実験に多大な協力をいただいた横浜国立大学の服部雅威君に深く謝意を表す。

文献

(1) Jansen, W., Trans. ASME, D, 86-4(1964), 750.
(2) 木下・エミリア, 機論, 42-362(1976), 3169.
(3) 萩崎・ほか2名, 機論, 52-480, B(1986), 2930.
(6) 辻本・ほか2名, 機論, 60-572, B(1994), 1286.
(8) 森尾・ほか2名, 機論, 42-367, B(1976), 987.