Development of a Diagonal-Flow Pump for Fish Transportation

Junichiro FUKUTOMI, Shouichi OOSHIMA,
Yoshiyuki NAKASE and Kazuhiro TOUJYOU

Single-flow-passage pumps for fish transportation, also called fish pumps, have been used widely in the fisheries industry. However, the pump efficiency is low and the vibration is large because of imbalance of the impeller. Therefore, a diagonal-flow pump with two blades is newly developed. The performance characteristics of the new pump and the flow conditions at the impeller exit are experimentally investigated. This pump shows high efficiency and stable operating conditions over a wide range of flow rate. Moreover, the pump impeller has a large slip factor which is nearly equal to the value calculated from Wiesner’s formula.

Key Words: Pump, Fish Pump, Diagonal-Flow Pump, Turbomachinery, Fluid Machinery

1. 論文
従来、魚類移送用のポンプとしては、ブレードレス型のうず巻形ポンプおよび斜流形ポンプ(1)(2)(3), ポルテックスポンプ(4), スクリューポンプ(5), ジェットポンプ(6)等が用いられてきた。その中でもブレードレス型のものはフィッシュポンプと呼ばれ、羽根車内の通路が単一で流れがスムーズで魚体の損傷が極めて少ないため広く使用されてきた。

しかし、ブレードレスタイプの羽根車は回転軸に対して非対称なため回転時に振動が生じやすく、動バランスがとりがたく、そのため、軸受部等の耐久性が劣り branchingポンプとなる。またブレードレスポンプは、多数羽根ポンプと比較して、ポンプ効率が相当に低く、このためポンプ構造の他のポンプと比較して、大馬力となる費用、設置場所等の面から大容量ポンプの普及に障害となってきた。

ここ数年来、このような従来の機種の短所を克服した新機種の開発のニーズが全国の業界、用途から生じてきた。一つは電力業界で海水取水口に入れるクラゲを生きたまま吸取して海に排出できるシステムであり、もう一つは水産業界からであり、大型大型網船において活魚を傷つけずに吸引、移送できる洋上漁労ポンプシステムである。このような状況のもと新しく開発すべきポンプの基本設計条件を以下のようにした。

（1）羽根枚数を2枚（通路は2つ）とし、配置を軸対称することによって動バランスを向上させるとともに、ポンプ効率を高める。

（2）ポンプを斜流タイプとしてポンプ外径を小型化するとともに流量-揚程特性をよくする。

本報告は、魚類移送用2枚羽根斜流ポンプ開発の第1段階として上記の条件のもとに設計製作されたポンプにおいて、単相流を用いた場合の性能および内部流れて調べたものである。

2. 実験装置および方法
新しく開発したポンプの羽根車を図1に、またスクールケーシングを図2に示す。吸込口から羽根車を通って吐出し口まで流路は狭まることがないよう、また羽根車入口端の曲率半径をできるだけ大きくとって魚体の損傷が最少となるように考慮した。羽根

---110---
魚類移送用斜流ポンプの開発に関する研究

図1 Schematic view of test impeller

図2 Schematic view of test scroll casing

車は2枚羽根斜流タイプであり、羽根車出口の平均半径 \(R_m = 199.5 \text{ mm} \)，羽根車入口の平均半径 \(R_m = 78.8 \text{ mm} \)，羽根車出口幅 \(B_m = 150 \text{ mm} \)である。羽根出口角はシュラウド側で15°、ハブ側で25°であり、羽根厚さは非常に厚くなっている。

スクロールケーシングは羽根車から出た魚類が、さらに吐出し口まで運ばれるように脂断きを非常によくとっている。またスクロールケーシングは薄板ではなく、溶接構造とするため、エルボを切断し、それを周方向に溶接してつなげることによって製作しており、スクロール断面形状は周方向に一定である。したがってスクロール断面積は周方向に一定である。

本研究で用いた実験装置の概要を図3に示す。本装置はポンプとして使用されるが計測の容易さから作動流体として空気を用いて実験した。三相誘導電動機によって駆動される羽根車を1500 rpmで回転させ、吸込管を通じて空気を吸込みスクリューポンプ吐出し口から大気中に吐出す。

吸込管には性能測定用の静圧孔、整流のための格子、流量測定用のオリフィスが取り付けられている。またオリフィス等の損失を補い、高流量を得るために吸込管の端に補助送風機を設置した。スクロールを取付け状態での性能および羽根車出口流動状態を測定するとともに、スクロールを取外し羽根車出口を大気開放の状態にして羽根車単独の性能および羽根車出口流動状態を測定した。羽根車回転数は電磁ビックアップにより、駆動トルクは、トーションバー形式のトルク検出器によってそれぞれ測定した。羽根車出口部の流動状態の測定には-xプローブの熱線風速計および三孔ビートー管を用い、図1に示す羽根車出口から20 mmの位置で、羽根車軸方向にトラバースさせた。オリフォスにより測定した流量から吸入管内流の平均圧力を求め、羽根車入口から上流330 mmの位置で静圧を測定し、これらから羽根車入口全圧を求めた。またスクロール出口は大気開放しており、スクロール出口静圧は大気圧として、ポンプ静圧 \(P_s \) は大気圧から吸入口全圧を差し引いて求めた。

性能の算出には次式を用いた。

流量係数 \(\phi = Q/(2\pi R_m B_m U_{in}) \)(1)

静圧力係数 \(\phi_s = 2P_s/\rho U_{in}^2 \)(2)

動力係数 \(\lambda = L/(\rho \pi R_m B_m U_{in}) \)(3)

静圧効率 \(\eta_s = QP_s/L \phi_s \lambda \)(4)

ここで \(U_{in} \) は羽根車出口の平均半径における周速度、\(Q \) は流量、\(L \) は動力、\(\rho \) は空気密度である。

3. 実験結果および考察

3.1 一般性能特性

一定回転数 \((N=1500 \text{ rpm}) \)で運転した場合の2枚羽根斜流ポンプの性能曲線をスクロールがある場合について図4に示す。静圧力は右下がりの安定な曲線を示し、軸動力は流量の増大とともにわずかに上昇している。静圧効率は \(\phi = 0.051 \)付近で最高効率を示し、その値は62%程度である。また全圧効率の最高値は \(\phi = 0.060 \)付近で74%程度となる。この全圧効率はスクリューポンプ出口の流れを一様と仮定し流量から求めた平均動圧を静圧（大気圧）に加えた出口全圧を用いて算出したものである。これから、本羽根車は2枚羽根車でなすが、かなり高効率が得られることがわかる。また小流量域では動力係数が特に小さくなり、効率曲線には \(\phi = 0.02 \)付近で凸部が見られ
図4 Performance curves

図5 Static pressure distributions at impeller exit

図4にはスクロールを取外して羽根車単独の場合の静圧曲線を破線で示しているが、その値は、スクロールがある場合に比べて小流量では小さく、大流量では大きくなっている。次にスクロールのθ=270°の位置（図2のA点）において3孔ピト管を用いて測定した羽根車出口付近の静圧分布を図5に示す。いずれの流量においても羽根車出口幅方向には静圧はほぼ一様であるが、その値は流量によって大きく変化する。流量の減少とともに羽根車出口の静圧は減少し、スクロール出口の圧力が大気圧であることからスクロール内で大きな圧力上昇が生じていることがわかる。逆に大流量では羽根車出口の静圧は正の値を示し、スクロール出口に向かって圧力低下を示している。これらのことが上述した静圧力係数におけるスクロール有無による変化を説明している。

3-2 羽根車出口の流動状態

3-2-1 時間平均流れの出口幅に沿った分布 図6の(a)～(c)は、スクロールがある場合の羽根車出口幅に沿った絶対速度(V/U∞), 絶対流れ角(α), 相対流れ角(β)のそれぞれについて、図2のA点で測定した時間平均流れの分布を示している。図6(b)を見ると、シュウド近傍でαは大きな値を示し、その後下降した後、B/Bz=0.4付近からハブ近傍まで上昇を

Fig. 4 Performance curves

Fig. 5 Static pressure distributions at impeller exit

Fig. 6 Time average flow distributions at impeller exit (with scroll casing)
続ける。図6(c)のβについてはαと同様でシュラウド側で大きいが、一度下降して$B/B_s=0.4$付近から図中に示した羽根出口角の傾斜にハブ側まで上昇していく。しかし、その値は羽根出口角に比べてかなり小さく、本羽根車の羽根枚数が2枚と少ないことから、滑りの影響が大きく現れている。流量に対する変化を見ると、本羽根車が後傾羽根車であり流量が減少するほど対流速度Vは大きくなり、絶対流れ角αは小さくなる。流れの回転速度が大きくなっている。また流量が少ないとき、シュラウド側での流れ角α、βの値は大きくハブ側で小さい。これは、流量が少なくなる程、流れにかかる遠心力の影響が大きくなり、流れはよりシュラウド側に沿って流れるとと思われる。

図7(a), (b)にはスクロールなしの羽根車単独の場合の対流速度V/U_{em}および絶対流れ角αの分布をそれぞれ示す。スクロールの有無を比較すると、スクロールがある場合は、同じ場合に比べて対流速度はわずかに大きくなり、絶対流れ角は小さくなっている。流れの回転速度成分は、スクロールがある場合がかなり大きくなっている。前述したように本羽根車の二つの羽根の後縁部分は非常に厚くなっており、この部分の摩擦による力もかなりの値を占めると考えられる。スクロールがある場合、復数したように小流量時には羽根車出口の旋回速度成分が大きいため、この羽根車外周部分に基づく摩擦力がかなり小さくなると考えられ、これが性能曲線において小流量時に動力係数が小さくなる要因の1つになりうると考えられる。また小流量時には羽根車がすすき仕事のうち、羽根後縁部分の摩擦による仕事がかなりの部分を占め、これが小流量時に効率曲線に凸部が生じる要因の1つになりうると思われる。

3.2.2 騰時流れの出口幅に沿った分布 図8は羽根車単独の場合の最高効率点流量（$\phi=0.068$）において熱流速計を用いて測定した羽根車出口の瞬時子午面対流速度成分V_{em}/U_{em}の線方向分布を示す。これらの値はトリガを用いて羽根車の回転に同期させた信号波形を平均化処理したものである。分布形状はシュラウド側でV_{em}/U_{em}は大きく、$B/B_s=0.4$付近まで減少しハブ側へいくに従って再び大きくなっている。羽根間通路領域においてはV_{em}/U_{em}は比較的大きな値を示す。

Fig.8 Circumferential distributions of meridional absolute velocity ($\phi=0.068$)

Fig.9 Absolute velocity vectors at impeller exit

---113---
魚類移送用旋流ポンプの開発に関する研究

\[k = \frac{\Delta V_s}{u_t} = \frac{v_m - V_s \tan \beta_{st}}{u_t} \] \hspace{1cm} (7)

これからの式に諸元を代入して滑り係数 \(k \) を求める。
一方，図10に示す羽根車出口の速度三角形を用いて実験的に滑り係数を求める。図10に示す，\(V_m, W_m \) は滑りがない場合の羽根車出口の絶対速度，相対速度を，また \(V, W \) は滑りがある場合の羽根車出口の絶対速度，相対速度をそれぞれ示す。\(\Delta V_s \) は滑り速度であり，この図から滑り係数の実験値は次式で表される。

\[k = \frac{1 - (R_{m}/R_{sw} - \varepsilon)^2/(1 - \varepsilon)}{V_s} \] \hspace{1cm} (6)

式(6)および式(7)を用いて計算した滑り係数を図11に示す。これより実験値の滑り係数はWiesnerの式から求められる値よりも大きいものの，かなり広い流量範囲にわたってWiesnerの値に沿っていることがわかる。

4. 結言

魚類移送用ポンプとして開発した2枚羽根旋流ポンプについて，空気単相流での性能および内部流れてについて検討した結果，次のことことが明らかとなった。

（1）2枚羽根旋流ポンプは，羽根枚数の多い一般の旋流ポンプと同様な性能特性を示し，最高効率点以外の部分流量においても安定した運転をえる。

（2）本研究で開発したポンプの全圧効率は74%程度であり，高功率さが大きく，羽根車が2枚羽根で羽根厚さが厚いことを考慮すれば，かなりよい効率を示している。

（3）本ポンプの羽根車は，羽根が2枚しかないことから，滑りの影響が大きく，滑り係数の実験値は，最高効率点流量付近で，Wiesnerの式より求められる値に近い値をとる。

本実験には当時の大洗生，臼井勝久氏の御協力を得た，厚くお礼申し上げる。

文 献

（1）Line, I. L. Jr. and Husa, V. L., Paper of the 1979 Summer Meeting of ASAE and CASE, No. 79-2115 (1979-6).

（2）漁労設備製造近代化研修会編，漁船，No. 214 (1978), 34.

（3）水力機械工学便覧編集委員会編，水力機械工学便覧，（1988），566，カロナ社。

（4）Stale, M. and Jackson, D., WORLD PUMPS, No. 185 (1982), 53.

（5）福富ほか2名，ターボ機械，12-10 (1984), 16.

（6）日本機械学会編，機械工学便覧，B5流体機械，（1986），12，丸善。