アニュラー型回転ヒートパイプの水平姿勢における
作動流動と熱輸送特性*
(第2報，各種伝熱条件に対する伝熱実験と理論解析)

高橋 恭郎*1，梅田 洋*1，李木 經応*1
橋本 律 男*2，水田 桂 司*2

Heat Transfer Rate of Annular-Type Rotating Heat Pipes
with Horizontal Axis
(2nd Report, Experiments and Theoretical Analysis
for the Heat Transport Rate)

Yasuro TAKAHASHI, Hiroshi UMEDA, Tunetaka SUMOMOGI,
Ritsuo HASHIMOTO and Keiji MIZUTA

Heat transfer efficiency of annular-type heat pipes is investigated experimentally and theoretically,
for the evaporating section and condensation section respectively. The heat transfer coefficients of evaporating liquid film are obtained under several conditions of the annular gap,
charged volume rate of the working fluid, wall superheating and rotational speed. It is shown that
the results of theoretical analysis for condensation heat flux agree well with experimental results,
and also that the taper angle of the condensation wall greatly influences on the heat transfer efficiency.

Key Words: Rotating Heat Pipe, Heat Transfer, Evaporation, Condensation, Annular Pipe

1. 緒論

回転ヒートパイプについては，その優れた熱輸送性能
が着目され，既にいくつかの研究例がある。⑴～⑶
しかしそれを実際に利用した製品例は少ない。その主
要理由の一つは，回転機器の構造の制約を厳しくヒー
トパイプのために新たに提供される空間が制限される
ためである。例えば工作機械の主軸モータでは，回転
軸の中心軸まわりの空間はワーク支持のための治具が
占有する場合が多い。よってヒートパイプは必然的に
アニュラー型とすることが求められる。しかしこの種
のヒートパイプに関する熱輸送特性の詳細な研究例は
まだ見られない。

そこで本研究では回転ヒートパイプの適用分野の拡
大が期待できるアニュラー型回転ヒートパイプに関し
てその熱輸送量をそれに影響するものと考えられる主要寸
法，その他の伝熱条件を変えることから実験的に求めめる。
また，凝縮管に関しては，理論モデルによる解析値と
比較，検討を行う。

2. 主な記号

<table>
<thead>
<tr>
<th>記号</th>
<th>意味</th>
<th>略称</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.p</td>
<td>比熱</td>
<td>J/kg(K)</td>
</tr>
<tr>
<td>D</td>
<td>直径</td>
<td>m</td>
</tr>
<tr>
<td>F_r</td>
<td>フルード数</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>摩擦係数</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>重力加速度</td>
<td>m/s^2</td>
</tr>
<tr>
<td>ΔH</td>
<td>蒸発潜熱</td>
<td>J/kg</td>
</tr>
<tr>
<td>L</td>
<td>軸長</td>
<td>m</td>
</tr>
<tr>
<td>N</td>
<td>回転数</td>
<td>1/s</td>
</tr>
<tr>
<td>Nu</td>
<td>ヌセクト数</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>壓力</td>
<td>Pa</td>
</tr>
<tr>
<td>Q</td>
<td>熱流量</td>
<td>W</td>
</tr>
<tr>
<td>q</td>
<td>熱流束</td>
<td>W/m^2</td>
</tr>
<tr>
<td>Re</td>
<td>レイノルズ数</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>半径</td>
<td>m</td>
</tr>
<tr>
<td>S</td>
<td>断面積</td>
<td>m^2</td>
</tr>
<tr>
<td>T, ΔT</td>
<td>溫度，温度差</td>
<td>°C, K</td>
</tr>
<tr>
<td>u</td>
<td>速度</td>
<td>m/s</td>
</tr>
<tr>
<td>V</td>
<td>流量</td>
<td>m^3/s</td>
</tr>
<tr>
<td>x</td>
<td>蒸発面，凝縮面の線線方向座標</td>
<td>m</td>
</tr>
<tr>
<td>y</td>
<td>伝熱面直角方向座標</td>
<td>m</td>
</tr>
<tr>
<td>a</td>
<td>熱伝達率</td>
<td>W/m^2K</td>
</tr>
<tr>
<td>s</td>
<td>液膜厚さ</td>
<td>m</td>
</tr>
<tr>
<td>s_o</td>
<td>蒸発域アニュラー隙間</td>
<td>m</td>
</tr>
</tbody>
</table>

* 原稿受付 1995年1月5日。
*1 正員，広島電機大学工学部 (☎739-03 広島市安芸区中野6-20-1)。
*2 正員，三菱重工業(株)広島研究所 (☎733 広島市西区観音新町4-6-22)。
3 実験方法

図1に実験装置を示す。ヒートパイプの外筒内径を74mm、内部空間の軸長を400mmとする。蒸発区の筒の内径は内外筒とも2.2mmである。この中で片側280mmを蒸発区、反対側50mmを凝縮区とする。蒸発区は許容されるアニューラー隙間が小さいことと、外筒の隙間の許容が小さいことを前提とすると、広範囲に薄く安定した液蒸りを形成させる必要があるため直管とする。また、凝縮区は、許容される空間が小さいことを前提に薬長を短くし、そのかわりにこれを利用して凝縮面にテープを使用し、蒸発流の冷却を是する。外筒の蒸発区と凝縮区の間は内径の差を設けることに、凝縮区の液膜厚さが蒸発区の液膜厚さに依存しないようにしている。また両筒の間を70mm隔て、かつ管材質を熱伝導率の低いSUS304Lとするこことより、全熱輸送量に対する管の熱伝導の寄与を無視できるようにしている。ただし凝縮面の外筒のみを細とし、かつ外筒はフィン付きを設けてこの半径方向の熱抵抗が凝縮液膜の熱抵抗に対して無視できるようにしている。薬長の各位置に、筒内は内表面から、筒外は外表面から1mmの位置に熱電対を埋め込み、スリッピングを介して管の温度を測定する。ヒートパイプの蒸発区は薬長方向に一定の熱流束が実現されるよう、筒内外面に黒体化塗料を塗り、筒外筒に設置した同心円状の円筒ヒータにより至近距離から放射加熱を行う。このとき蒸発区の中央の温度が一定となるように、ヒータの出力を調整する。凝縮区は、筒内外面の各フィンに水平の2方向から冷却水を当てて冷却する。この水温と水温を調整することにより、凝縮面の温度を一定に維持する。冷却水は保温のために2重構造としたジャケットで回収し、入出の水温と水温を測定して熱輸送量を求める。ヒートパイプは回転軸に固定し、この軸をモーターで駆動する。回転軸はSUS304Lとし、回転軸とヒートパイプは3ヶ所の支持部を除き0.5mmの隙間を設けることにより、回転軸への熱輸送がヒートパイプの熱輸送量に対して無視できるようにしている。モーターの回転速度はインバータで設定し、別途、非接触の回転計でモニタする。これによる回転速度の設定精度は0～3000rpmの範囲で±1rpmである。

表1に製作した5種類のヒートパイプの主な変更条件を示す。タイプ1と他の比較するための標準タイプである。蒸発区に関してはアニューラー隙間δa、作動液封入圧φを変えそれぞれタイプⅡ、タイプⅢとし、凝縮区に関しては筒外の筒幅を変えてそれぞれタイプⅣ、タイプⅤとする。

ヒートパイプ内の作動液としてメタノールを用いる。メタノールの飽和状態での物性値を表2に示す。この値は後記の解析で用いている。
4. 熱輸送量の解析モデル

4.1 仮定 実験で用いたニューラー型回転ヒートバイプを解析の対象とし、その作動条件として次の前提条件をおく。⑴ ヒートバイプの回転軸は水平である。⑵ ヒートバイプの内表面は滑らかであり、ウッ クは無い。⑶ ヒートバイプ内の作動液のみの単一成分である。⑷ ヒートバイプは作動液の液相が連成力 により管の周方向に均一な厚さで膜状に張り付く速度 で回転させる。⑸ 定常状態で作動させる。

この状態に置かれたヒートバイプ内部の熱輸送特性 を解析するモデルとして、次の仮定をおく。

[1] 蒸発面は均一熱流束、凝縮面は均一壁温度である。
[2] 液膜および蒸気は界面が安定な層流である。
[3] 液膜厚さは外筒内径に対して十分に小さい。
[4] 連成力に対し、重力に無視する。
[5] 作動液の物性の温度依存性を無視する。
[6] 気液及び固定筒内の熱抵抗を無視する。
[7] 液の表面張力、蒸気の圧力分布を無視する。
[8] 管の軸方向熱伝導を無視し、管端および内筒は断熱面とする。

4.2 蒸発域の熱流束分布（液膜流れが層流の場合）
直管部である蒸発部の液膜の運動方程式は、蒸気のせん断力、圧力分布を無視すれば式(1)～(3)のように表わせる。

\[
\frac{\partial P}{\partial x} = \frac{\mu u}{\rho} \frac{\partial u}{\partial x} = \frac{2}{\rho} \frac{\partial u}{\partial x}
\]

(1)

\[
\frac{\partial u}{\partial x} = -g \frac{1}{\rho} \frac{\partial u}{\partial x} + \frac{\mu u}{\rho}
\]

(2)

\[
f = \frac{24}{Re}, \quad Re = \frac{\mu u}{\rho}
\]

(3)

ここで液膜の動力は液位の軸方向勾配に連成力が作用して生じ、式(4)のように表わせられる。

\[
\frac{\partial P}{\partial x} = \frac{\mu}{\rho} \frac{\partial u}{\partial x}
\]

(4)

式(1)～式(4)より式(5)が導かれる。

\[
\frac{\partial u}{\partial x} = -\frac{\rho}{\mu} u \frac{\partial u}{\partial x} \frac{\partial H}{\partial x} = \frac{\rho}{\mu} u \frac{\partial u}{\partial x} \frac{\partial H}{\partial x}
\]

(5)

式(5)は、実験で近似的に実現される仮定[1]のものと、液膜の流量分布V(x)が次のように表わされる。

\[
\frac{dV}{dx} = \text{Const}
\]

ここでx=0でV=V_0, x=LでV=0とするときV=V_0を次式で表わせる。

\[
V = V_0(1-x/L)
\]

(6)

式(5)と式(6)より、蒸発域の液膜厚さ分布が次のように求められる。

\[
\delta = \left\{ \frac{\delta_0 - \frac{24 \rho u}{\pi D \mu} V_0 \left(x - \frac{x}{2L} \right)^4}{2} \right\}^{1/2}
\]

(7)

式(7)は、実験の条件設定値と測定される熱輸送量から求まったとすると、回転数の内周に伴い、実験条件設定値と液膜厚さ分布が非定常となる。またその結果、蒸発面温度分布、熱流束分布もばらばらになることになる。

以上の検討は仮定[2]の層流液膜を仮定した場合であり、このとき蒸気熱流束に関しては液膜の熱伝導が支配的となる。しかし熱流束が高い場合は自然対流や沸騰により伝熱面が変化することが考えられる。これは別途、実験的に求めた蒸気熱流束と液膜の伝 導の熱伝導の比を表わす数値で評価する。

まず、液膜の運動方程式は図2に示す微少要素に関する次のように示される。

\[
\frac{\partial P}{\partial y} = \frac{\mu u}{\rho} \frac{\partial u}{\partial y}
\]

(8)

\[
\frac{\partial P}{\partial y} = -\rho \tau \frac{\partial u}{\partial y}
\]

(9)

\[
\tau = \frac{\partial u}{\partial y}
\]

(10)
図 2 凝縮域の解析モデル

式(9)を、気液界面で \(P = P_r \) として \(y \) 方向に積分し、その \(x \) 方向の勾配を求めると、次式を得る。

\[
\frac{dP}{dx} = \mu Q \alpha_{\text{vap}} \cos \theta \left(\delta - y \right) \sin \theta + r \frac{d\delta}{dx}
\]

ここで液膜の流れは \(x \) 軸正方向であり、よって気液界面の勾配が \(\theta \) を上回ることはないことから、式(9)の右辺に関して \(d\delta/dx \) < \(\sin \theta \) かつ仮定(3)より \(\delta - y < r \) である。また右辺括弧内第一項を無視し仮定(7)を用いれば次式を得る。

\[
\frac{dP}{dx} = \mu Q \alpha_{\text{vap}} \cos \theta \frac{d\delta}{dx}
\]

式(9)を \(y \) で微分し、これと式(4)を式(10)に代入すると \(u \) の変動方程式に関する微分方程式式(4)を得る。

\[
\frac{\partial u}{\partial y} = \frac{1}{\mu} \mu_Q \alpha_{\text{vap}} \cos \theta \left(\frac{d\delta}{dx} - \sin \theta \right)
\]

式(4)の右辺は \(y \) に関して定数である。よって \(y \) で積分して \(u \) の分布を求めると \(y = 0 \) で \(u = 0 \), \(y = \delta \) で \(y = \tau \) すなわち \(u \) が \(\tau \) 一定す \(\delta \) 一定より次式を得る。

\[
u = c_1 \frac{1}{\mu} Q \alpha_{\text{vap}} \cos \theta \left(\frac{d\delta}{dx} - \sin \theta \right)
\]

式(4)を積分して流量と膜厚の関係を求めると次式で表わせる。

\[
u = 2 \pi r \left(\frac{\tau_1}{2} \frac{\delta^2}{3} - \frac{\delta}{3} c_1 \delta^3 \right)
\]

式(4)における \(\tau_1 \) は蒸気の対流気によるせん断力と凝縮における運動量の伝達によって生じ、次のように表わせる。

\[
\tau = r \alpha_{\text{vap}} \cos \theta - \frac{q_{\text{vap}}}{\Delta \theta} \left(\frac{V_r}{2} + V \right)
\]

ここで \(S \) は蒸気流路の断面積であり、表 1 の \(\delta_0 \) と \(\delta_1 \) および \(\theta \) に応じて与えられる。

図 3 数値計算のフロー

また \(r \) は蒸気流によるせん断力であり、アニュラー管の場合は次式で表わせる(15)。

\[
\tau = \frac{4 \left(1 - (1 - \kappa^2) / 2 \ln(1/\kappa) \right)}{r \pi (1 - (1 - r^2) / 2 \ln(1/\kappa))} V
\]

\[
\tau = r \alpha_{\text{vap}} \frac{q_{\text{vap}}}{\Delta \theta}
\]

この凝縮による液と蒸気の流量の変化は次のように表わされる。

\[
\frac{dV}{dx} = -\pi r \frac{q_{\text{vap}}}{\Delta \theta}
\]

以上の式(4)～式(6)を連成し、また軸端の条件として蒸気および液の流量を零とすることにより、 \(x \) 方向の流速 \(u \) と \(v \) が選定される。そこで解析的積分による式の展開は極めて煩雑となるため、凝縮域先端から一定分割幅で
図4 先端液体膜厚に対する膜厚分布

図5 先端液体膜厚に対する伝熱量と出側膜厚

図6 ヒートパイプ内外側の温度分布の一例

図7 回転数、伝熱面温度差と熱輸送量

図8 タイプ別の回転数と熱輸送量

5. 実験結果と解析結果

図6にタイプ1のヒートパイプの外筒および内筒の温度分布の測定結果の一例を示す。各温度は熱電対による測定値に対し、熱電対から両側内面までの内厚に相当する温度差を補正しており、このケースでの温度差は蒸発面側中央で0.5K、凝縮面側中央で0.02Kである。蒸発面の外筒の加熱条件は熱流束一定に近いが温度分布も両端を取りもとに一定となっている。これは解析において液体膜厚の軸方向分布がほぼ均一になるために温度分布も均一になると予測したことと一致する。内筒の温度については、内筒からシャフトおよび
シャフトから外部空気の間が断熱に近い状態であることから、これがほぼ蒸気温度を表わしていると考えてよい。またその温度分布が蒸気流路方向にほぼ均一であることからヒートパイプの内部における蒸気相の熱抵抗は無視できることが分る。凝縮域については解析モデルで仮定した、均一温度分布でかつその温度を40℃に維持することがほぼ実現している。

図7に図6の状態から凝縮面と蒸発面の厚さを一定に維持しながら回転数を変えたときの熱輸送量の変化を示す。250rpm〜400rpmの間に熱輸送量の移動現象が生じているがそれ以上に回転数を上げると熱輸送量は単調に増加し、かつ除かれる方が小さくなっている。蒸発面と凝縮面の温度を変えてもこの傾向は同様となっている。

図8にタイプ別の熱輸送量の測定結果を示す。凝縮域の隙間を64%に低減したタイプⅤはタイプⅠとほぼ同じ熱輸送量となっているが、蒸発域隙間を50%にしたタイプⅡ、封入率を2倍にしたタイプⅢ、テーパ角を零にしたタイプⅣはいずれもタイプⅠより大幅に熱輸送量が低下している。

図9よりヒートパイプの熱輸送における主な抵抗は蒸発蒸発液膜と凝縮液膜である。そこでまず、蒸発液膜についてその蒸発の効率を熱伝達率あるいはヌルセクト数で比較する。ここでヌルセクト数については、外筒内面に均一に張り挟いた状態の液膜厚さを代表長さとする。液膜厚さは凝縮面上の液の体積が封入流動に対して小さいとして無視し、封入流動と直管部の内径から求めると

図10にタイプ別の回転数と熱放送率を示す。このときの温度差は測定した蒸発側温度と凝縮側内の内管温度の差の温度としている。回転数は熱伝導力として液膜の挙動に影響することから、これを外筒内径を代表長さとしたフルー数Frに換算した値に横軸に記している。Ncrはいずれも1より数倍大きくなり蒸発液膜は自然対流か沸騰を生じていることが推定できる。また、回転数、ΔTmの大きい方がNcrも大きく、Fr

図9 回転数、温度と蒸発熱放送率

図10 タイプ別の回転数と熱放送率

図11 回転数、温度と凝縮熱放送率

図12 タイプ別の回転数と凝縮伝達率
図13 テーパ角と凝縮域熱伝達率

図14 凝縮域隙間と凝縮熱伝達率

が20, ΔT_mが20KのときのNueは5に達している。

図10にタイプ別別のα_mとNueを示す。隙間を小さくしたタイプIIのα_mは図8で熱輸送量が少ないにもかかわらず回転数を上げるとタイプIのα_mに近づいている。この原因の推定は難しく今後の検討課題である。仕入数を増したタイプIIIは回転数の全域でタイプIよりも小さいα_mとなっている。これは厚くなっていた液膜の熱抵抗に関与すると考えられる。

図11にタイプIの凝縮域の伝熱に関する実験結果と解析結果を示す。凝縮に関するノルマル数Nueの代表長さは、凝縮域の平均隙間δmとしている。フールド数Frの代表長さはテーパ管の平均内径としている。回転数が500rpm以上、Frが3以上でα_m、Nueは回転数とともに単調に上昇するが、その勾配は段々と小さくなっていく傾向がある。500rpm以下の100rpmまでは発散域のα_mと異なる温度回転数による変更現象が見られない。実験で示す解析結果はFrが4以上で実験値とおおむね合ており、キャリコモデルの妥当性が確認できる。Frが4以下においては、数値的な発生のときに収束解が得られていない。

図12にタイプ別のα_m、Nueを示す。実験結果によると、テーパ角を無くしたタイプIVのα_m、Nueが3.3°のテーパ角のタイプIの半分以下になっており、テーパ角の効果が示されている。これより例えばテーパ角が3.3°のタイプIの場合、図10の3000rpmでα_m、Nueは約10000W/m²Kであるのに対し、図12より同じ回転数でα_m、Nueは約8000W/m²Kであるから、ヒートパイプ内の凝縮域熱抵抗を発散域と同程度にするには、凝縮域隙間を小さくしたタイプVのα_m、NueはタイプIに対して顕著な低下が見られない。

これらに関する解析結果を実験で示す。タイプIとタイプVについては解析値と実験値がよく合っている。タイプIVについては、高回転数域で若干の差が出てい

この実験結果より、液膜の蒸発熱は回転数を上げた方が促進されることが示されている。これは回転による加速度が、液膜内の自然対流あるいは沸騰を促進するためではないかと考えられる。関連する文献によると、MERTESら(11)が回転円筒内のプール沸騰伝熱の実験を行ない、熱流束が10000W/m²以下なら回転の加速度が蒸発熱を促進する結果を出しているが、液膜が深く回転の加速度が22G (Fr=4.5) でまわりに限られている点が本研究と大幅に異なる。一方、これとは反対の結果を示している例(12)、(13)もあることから、現象が十分に解明されているとは言えない。とに本研究の対象とする蒸気蒸発の加速度域での蒸発のメカニズムは今後の詳細な解析が待たれる。
7. 結論

直管の蒸発面とテーパ状凝縮面を有するニューラー型回転ヒートパイプの熱輸送性能を、実験および理論的に解析し次の結論を得た。

(1) ヒートパイプの熱輸送量は、内部の液相が管の下端に貯まるような低回転数域を除き、回転数を上げると上昇するが、その勾配は徐々に低下する。

(2) 蒸発域の熱伝達率は低回転数域での遷移を除くと回転数、過熟度ともに上昇する。その結果、フルード数20、液膜厚さ0.8mm、過熟度20Kのとき、その液膜の熱伝導による熱伝達量に対し5倍になる。また沸の射出を上げた場合、およびニューラー隙間間隔を縮少すると蒸発熱伝達率は低下する。これらの原因を説明するには今後の詳細な解析を要する。

(3) 凝縮域における理論モデルによる熱輸送量の解析結果は、回転数、温度差、ニューラー隙間、テーパ角を変えたヒートパイプによる実験結果のいずれに対しても現状液膜が安定に存在すると考えられるフルード数4以上の範囲でほぼ一致する。

(4) 凝縮面のテーパ角は凝縮伝熱の促進に高い効果があり、テーパ角3.3°の場合の一例として凝縮域の熱伝達率は蒸発域の8倍になる。一方、ニューラー隙間間隔の依存性は小さい。

文献

(2) P.J. Marto and Wagenseil, AIAA J., 17-6(1979), 647.
(3) 藤岡, 中山, 他, 機論B, 54-506(昭63-10), 2880.

—207—