Three Dimensional Numerical Simulation of Separated and Reattached Flow and Heat Transfer over Blunt Flat Plate

Hideki YANAOKA and Terukazu OTA

This paper presents three-dimensional simulations of an unsteady separated and reattached flow and the heat transfer over a blunt flat plate. A numerical analysis of the Navier Stokes equations and energy equation is carried out using the finite difference method. The present results of three-dimensional calculations are compared with the previous results of two-dimensional ones and show an improvement of accuracy of the flow characteristics, demonstrating the importance of three-dimensional simulations for nominally two-dimensional flow. It is clarified from the numerical results that the separated shear layer becomes unstable and forms spanwise vortices. These vortices become three dimensional and are shed from the reattachment flow region. The shed vortices possess hairpin-like structure. These large scale vortex structures have great effects upon the heat transfer in the separated, reattached and redeveloping flow regions.

Key Words: Separated and Reattached Flow, Heat Transfer, Unsteady Flow, Three Dimensional Flow, Blunt Flat Plate, Numerical Analysis, Finite Difference Method

1. 緒 言

はく離と再付着を伴う流れでは、せん断層の不安定化により巻き上がった渦が組織的渦構造へと成長し、熱輸送を活発にすることが知られている。その中でも鈍頭平板まわりの流れは、はく離と再付着を伴う流れの中で最も簡単な形状の一つであるにもかかわらず、平板前線での境界層が極度に薄く、しかも前線ではなく離せん断層は直後に何直角に曲げられ、直ちに乱流に遷移するためにかなり複雑であり、従来から実験的研究が数多くされているが[11],[12]。いまだに未解明な点が多い。また、数値解析による研究はキヤら[14]、Djilaliら[19]およびTaffi-Vanka[20]-[21]が行っているが、鈍頭平板まわりの非定常乱流熱伝達機構を三次元解析により明らかなにした研究はいまだにないようである。他方、近年のスーパコンピュータの飛躍的な発達に伴い、複雑な乱流構造の直接計算により明らかにしようとする試みもなされている[22]-[23]。

以上のよう観点から、著者らは先に鈍頭平板まわりの流れと熱伝達の二次元計算を行い、せん断層の巻き上がりによって生じた渦が大規模渦へと成長し、再付着点近傍より放出されること、またこの大規模渦構造により熱伝達が促進されることを示した[11]。しかしながら、二次元計算では流れの三次元性を把握できず、また乱流を過大評価することから、信頼性の高い流れの予測には三次元解析を行うことが必要である。このようなことから、本研究では、同一の流れ場に関して三次元計算を行うことによって、はく離と再付着を伴う鈍頭平板まわりの複雑な流れの三次元構造およびその熱伝達機構に及ぼす影響を明らかにしようとするものである。

2. 順 号

\[C_f := \frac{C_1}{\sqrt{(C_f^2/2)}} \]
\[C_p := \frac{p - p_a}{(C_p^2/2)} \]
\[E_q := |\nabla q| \quad \text{のパワースペクトル} \]
\[f := \text{パワースペクトルの周波数} \]
\[H := \text{平板の厚さ} \]
\[\nu := \text{逆流率} \]
\[Nu := \text{メノセル数} = aH/\nu \]
\[p := \text{圧力} \]
\[Pr := \text{プラントル数} \]
3. 基礎方程式および数値解法

本研究では三元化非圧縮粘性流体を取り扱う、鈍頭平板まわりの流れ模様および座標系を図1に示す。支配方程式は次の式を用い、ナビエ・ストークスの運動方程式、エネルギー方程式である。

\[\nabla \cdot \mathbf{u} = 0 \hspace{1cm} \text{(1)} \]

\[\mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u} \hspace{1cm} \text{(2)} \]

\[\theta_0 + \mathbf{u} \cdot \nabla \theta = \frac{1}{RePr} \nabla^2 \theta \hspace{1cm} \text{(3)} \]

ただし上式は、速度、圧力、座標はそれぞれ主流速度 \(U_\infty, \rho U_\infty \)、平板厚さ \(H \) で、温度 \(\theta = \theta - \theta_0 \) において無次元化されている。上記の解法は、既報告13)と同様SMAC16)を用い、離散化は、時間微分には二次精度のAdams-Bashforth法を使用し、空間微分については、対流項には五次精度上流差分、粘性項には四次精度中心差分を用いた。また圧力補正のポアソン方程式は二次精度中心差分を用いた。

計算領域は、x軸方向に \(-10H \sim 30H\)、y軸方向に \(-0.5H \sim 9.5H\) とし、x軸方向には \(0 \sim 4H\) とした。境界条件は、速度については壁面で滑り、入口で一様流とし、出口は一様微分した。鈍頭中心軸を通り上流側（下極界）では対称条件とした。なお、二次元計算において平版の上下で時間平均的には上下対称であることを確認しており、上極界は \(y\) 軸方向速度は零、その他の一様微分した。温度については入口で一様温度、平版上面を鈍頭流束一定、前面は断熱、出口は二階微分とした。下極界は対称条件とし、上極界は一階微分した。スパン方向には速度および温度ともに周期境界条件とした。格子は \(246 \times 123\) 41の非一様直交格子を使用した。既報告13)の二次元計算において格子の依存性は小さいことを確認している。また計算は既報告13)と同様にレイノルズ数1000、プラント数0.7について行った。

計算は、時間間隔 \(At = 0.001H/U_\infty\) で行い、流れはほぼ周期的になった後データのサンプリングを行った。時間平均値は、サンプリング時間を \(180H/U_\infty\) とし、180000個のデータおよびスパン方向のデータの平均値とした。また、速度、圧力、温度変動の時系列データのサンプリング周波数は100000Hz、サンプリング時間は \(180H/U_\infty\) であり、18000個のデータをサンプリングした。なお、一周周期のサンプリング回数は約10°であり、また以下に示す結果ではデータのサンプリング開始時刻を \(T = 0\) とする。

4. 結果および考察

図2に瞬間に圧力、スパン方向向度および温度分布の代表例として時刻 \(T = 60\) の場合を示す。なお、図2(b)は \(\rho = -0.4\) の等面値を示している。圧力および温度分布により、せん断層の巻き上がりによってスパン方向に軸をもつ渦が \(x/H = 5.5\) 付近に存在することがわかる。しかし、スパン方向に一様ではなく三次元的な渦構造であり、さらに前線より伸びるせん断層はかなり下流まで安定で二次元の正であるが、その後、渦の巻き上がりとともに流れは三次元的となる。このため、鎖状層上方半部で流れはよく、流動は活発でないのが温度分布よりわかる。せん断層の巻き上がりによって生じた渦が壁面に衝突する付近が平均的な再付着点であり、その再付着点より下流には放出される渦が存在するが、流れが三次元的であるため、二次元計算13)で得られたような鮮明なスパン方向向度を有する渦放出されていない。また温度分布より、壁面で加速される流れが渦によって主流へ移動しているのがわかる。

Fig. 1 Flow configuration and coordinate system
図3に平均壁面摩擦係数分布C_fを既存値$^{(9,10)}$と
とともに示す。既報告$^{(9)}$の二次元計算では$x/H=1.5$
から3.5の範囲で実験$^{(6)}$では確認されていない正の値が
存在するが、三次元計算では負のほぼ一定値となっ
ている。これは、二次元計算においてはスパン方向へ
の流体移動が無視されているためと思われる。図3よ
り$C_f=0$となる位置を時間平均再付着長さとすると
約$x_f=7.0H$である。なお、既存の実験値$^{(9,10)}$では、
$Re=26,000〜50,000$において約$x_f=5H$である。ま
た、既存の計算値と定性的には一致しているが、本計
算値のほうが再付着長さが長く、はく離泡内でC_fは
より大きな負の極小値を示している。

図4に平均壁面圧力係数分布C_pを既存値$^{(9,10)}$と
比較して示す。三次元計算を行うことにより再付着点

－281－
近傍で二次元計算（15）にみられた極端なオーバーシュートは生じないのでわかる。また、実験値（15）のいくつかの相違はレイノルズ数の相違が大きいものと思われる。

図5、6にそれぞれ壁面摩擦係数と壁面圧力係数のrms値分布C_{frms}、C_{prms}を示す。再付着点近傍では、せん断層が壁面に衝突するために大きくなるが、二次元計算（15）ではスパン方向流れが無視されるために、再付着点近傍で三次元計算結果よりかなり大きな値を示す。全体的に二次元計算では変動成分を大きく評価するが、三次元計算を行うことにより既存値（15）とよい一致が得られる。

図7に逆流率分布I_rを示す。三次元計算では$I_r=0.5$となる位置が前述の$C_f=0$で定義した時間平均再付着点と一致している。一方で$I_r=0.5$となる位置が再付着点とされているが、本計算値はそれをよく表している。しかし、二次元計算では$I_r=0.5$となる位置と再付着点が一致せず、しかも十分下流においてさえ$I_r=0$とならない。

図8に平均ナッセル数分布$ar{Nu}$とナッセル数のrms値分布Nu_{rms}を示す。二次元計算（15）では$ar{Nu}$が最大となる位置は再付着点より上流に存在するが、三次元計算ではほぼ再付着点で最大となる。二次元計算と異なり三次元計算では、$ar{Nu}$とNu_{rms}が最大となる位置は一致しており、再付着点で温度変動が大きく$ar{Nu}$が最大となるのがわかる。

図9にx方向平均速度分布$ar{u}/U_w$を高レイノルズ数での実験値（16）と比較して示す。実験値とのよい一致
Fig. 11 Turbulent fluctuating velocity
(+: Kiya Sasaki1+)

Fig. 12 Reynolds shear stress
(+: Kiya Sasaki1+)

Fig. 13 Turbulent fluctuating temperature

(a) Isosurface of enstrophy
(b) Isosurface of temperature

Fig. 14 Time variations of enstrophy and temperature
は得られておらず、実験と同一のレイノルズ数の計算が必要と考えられるが、レイノルズ数がおよそ 700 以上では流れの本質的な構造は変わらないとされていることから、流れ構造の概略は把握できているものと思われる。

図10に平均温度分布 $(\bar{\theta} - \theta_0)/(\bar{\theta}_e - \theta_0)$ を示す。ほど離泡前半部では、せん断層外縁近傍の温度こう配が大きくなっている。これは、ほど離泡内の高温層が主流側の低温層にさらされ、この領域で熱移動が活発なためであり、Ota と Kom15の実験でも同様な傾向は確認されている。

図11にx, yおよびz方向速度の乱れ強さ分布 u_{rms}/U_e, v_{rms}/U_e, w_{rms}/U_e を示す。レイノルズ応力分布 $-\langle u'u' \rangle/\langle U_e \rangle^2$ をKiya Sasakiの実験値16と比較して示す。y軸はせん断層の中心 Yで0となるようにしてある。u_{rms}については、ほど離泡前半部で実験値よりも小さい値となっているが、後半部は比較的よく一致していると思われる。v_{rms}は再付着点の壁面近傍で実験値の相違がみられる。w_{rms}についてはその最大値を27f_eであり、実験値の0.22f_eとTafti Vanka16の0.24f_eと比較すると若干大きいがほぼ一致している。レイノルズ応力については、再付着点において本計算値はKiya Sasakiの実験値よりせん断層の中心で大きな値となっている。しかし、Tafti Vankaの計算値16ではその最大値は0.03f_eであり本計算値とほぼ一致している。

図13に温度の乱れ強さ分布 $\theta_{rms}/(\bar{\theta}_e - \theta_0)$ を示す。再付着点近傍のせん断層外縁近傍に急激な変化がみられる。これは、壁面近傍で加熱された流体が大規模渦構造によって壁面から持ち去られ、主流との熱交換が活発に行われるためであると考えられる。

図14にエンストロフィおよび温度の等価面（それぞれ3.5, 0.03）の時間変化を示す。時刻 $T=60$では平板前線でほど離せん断層は、下流に行くに従い不安定となり渦へ巻き上がり、二次元的な渦に成長している。また、再付着点より下流では放出された大規模渦が存在する。時間を経過とともにこの大規模渦は下流へ移動していく、この渦構造による混合作用によって壁面で加熱された流体が主流へ持ち去られているのが温度の等価面より確認できる。

図15に再付着点より下流のx, y, z断面で時刻 $T=60$における速度ベクトル図と温度分布を示す。$x/H=8$においては、たがいに逆回転の渦対が存在し、さらに下流の$x/H=9$ではマッシュルーム形の大規模渦構造が存在する。この図と図14(a)のエンストロフィ分布において$x/H=8〜9$付近にみられた渦構造の形から、再付着点より下流ではヘアピン構造をした大規模渦が存在すると考えられる。Sasaki-Kiya15は、ヘアピン
流れが再付着点より周期的に放出されるのを可視化実験により明らかにしているが、本計算結果はそのような流れ構造をよく表している。また温度分布より、放出されたヘアピン渦によって熱が主流へ運ばれているのが明らかに確認できる。

図16にせん断層外縁近傍のx方向速度変動のパワースペクトルの流れ方向変化を示す。ばら離前半部では渦の生成、合体により高周波帯が卓越しているが、下流に行くにしたがい約0.8〜2.0/ X_eを中心とした周波数帯に集中してくる、これは大規模渦の渦放出周波数を表している。

図17にx/H = 2.0における Nuと C_fの時間変化を示す。再付着点近傍では、C_f が極小となる位置で Nu が極大値を示す、すなわち、Nuが極大値を示すのは大規模渦の存在するためであり、時間の経過とともに大規模渦は下流へ移動するため、Nuの極大となる位置は下流へ移動している。このような大規模渦による熱輸送機構について鈴木らの報告があるが、必ずしもC_fが極小となる位置でNuが極大とはなっていない。これは三次元流れ構造をもたらすものと思われる。

5. 結 言

本研究では、ばら離と再付着を伴う鈴頭平板まわりの非定常三次元流れに関して、レイノルズ数10000、プラントル数0.7について数値解析を行い、以下の知見を得た。

(1) せん断層の巻き上がりによって渦が生成され、合体・成長しながら三次元的な大規模渦へ成長し、再付着領域よりほぼ周期的に放出される。比較的低いレイノルズ数にもかかわらず三次元の強い流れとなり、放出された渦はヘアピン構造をしており、熱輸送機構に大きく寄与している。

(2) 二次元計算ではスパン方向流れが無視され、渦の壁面への影響を過大評価し、変動量を大きく見積もるが、三次元計算を行うことによりそれらは改善される。

(3) 平均スセル数が最大となるのは、時間平均の再付着点X_e=7.0Hに存在し、またそこではスセル数のrms値が極大値を示す。

(4) 大規模渦が存在する位置で瞬間スセル数は極大値を示し、渦の移動とともにその極大位置も下流へと移動し、再付着点近傍で最大値に達し、下流に移動しながら減少する。

なお本計算は東北大学流体科学研究所のスーパーコンピュータ CRYSTAL YMP8を使用して行った。ここに謝意を表する。

文 献

