Study of Subcooling Effect of Injected Water on Falling Water Limitation in Countercurrent Two-Phase Flow in Vertical Channels

Yukio SUDO

This study analytically investigated the subcooling effect of injected water on falling water limitation in countercurrent two-phase flow (CCFL) in vertical channels, by applying a new model of momentum balances for both liquid and gas phases to the entire length of the channel. The subcooling effect of injected water on CCFL, which is one of the dominant parameters, had been clarified neither analytically nor experimentally because the CCFL phenomena is so complicated thermodynamically. As a result of the present study, it was clarified that the analytical model proposed here could give good predictions of the existing data on the subcooling effect of experiments simulating the performance of emergency core cooling water injection during a loss of coolant accident in pressurized light water reactors.

Key Words: Nuclear Reactor, Multiphase Flow, Condensation, Countercurrent Flow, Falling Water Limitation, Subcooling Effect

1. 緒言

垂直流路での対向二相流落下水制限(CCFL)現象は、古くからフラッディングとして知られ、落下する液流量が対向して上昇する気流によって制限される現象である\(^{(1)}\)。

例えば円形流路の場合、ヒートパイプやリフラックス凝縮器の容量を決定することから、矩形流路の場合板状燃料を用いる研究炉の事故時の限界熱流束を決定し、さらに、環状流路の場合には軽水圧の冷却材喪失事故時の非常用冷却水の炉心への注入開始条件および注入流量を決定することなどから、非常に重要な問題となっている\(^{(11)-(14)}\)。

これまで種々の流路形状や支配パラメータについて、実験的にも解析的にも多数の研究が行われてきた。しかしながら、気液二相が蒸気-水の場合、現象が複雑であるため重要な支配パラメータの一つである注入水のサブクーリングの効果は、実験的にも解析的にもほとんど解析されている。一方、著者は、これまで空気-水二相流のサブクーリング効果を把握し、相変化が無視できる蒸気-水二相流のCCFLについて、気液相の運動量の釣合いを考慮した解析を行い、既報の実験結果の傾向を的確に定量的に評価できることを示した\(^{(11)-(13)}\)。この解析モデルは、注入水がサブクーリングを有し垂直流路内で凝縮が生ずる場合にも適用できるものと考えられる。

そこで、本研究は、著者が先に報告した上記の解析モデルをさらに発展させCCFL時の注入水のサブクーリングの効果を解析的に導出し、その結果を、環状流路を展開した形の平板状流路での既存の実験結果\(^{(14)}\)と比較検討した結果について報告するものである。

記号

\[
\begin{align*}
A & : \text{流面積} \\
A_i & : \text{係数} \ [\text{式} (6)] \\
B_0 & : \text{ボンド数} = \left((\rho_l - \rho_g) g / \sigma \right)^{1/2} D_e \\
B_i & : \text{係数} \ [\text{式} (6)] \\
C_p & : \text{定圧比熱} \\
D_e & : \text{等価水力直径} \\
D & : \text{摩擦損失係数} \\
g & : \text{重力の加速度} \\
h_{\text{nuc}} & : \text{蒸発潜熱} \\
\end{align*}
\]

*：原稿受付：1995年6月26日
*：正員、日本原子力研究機構東海研究所(☎319-11 苫電県那珂郡東海村白山町2丁目)
2. 解析モデルとその検討

図1に、本研究で対象とするCCFLに及ぼす注入水のサブクーリングの効果が非常に重要となる例を示す。図1に示すように、加圧水形核軸の冷却材喪失事故時には、健全コールドレッグに注入された非常用

心冷却水は、ダウンカーマー内で管心からの上昇蒸気流

によって落下が制限され（CCFL），管心への有効な注

水が阻害される。この注入水の温度は通常常温であり、

大きなサブクーリングを有しているのでダウンカーマー

内で激しい蒸気凝縮が生じる。この注入水のサブクー

リングのための蒸気凝縮のCCFLへの影響を調べる実

験として、図2に示す環状流路を展開した形の平板流

路での実験が行われている[1][2]。流路の下の空間に

吹き込まれた飽和蒸気は平板状垂直流路を上昇する。

流路上部のノズルから注入されたサブクーリング水は、一

部は上昇蒸気流を凝縮しつつ流路壁に沿って流下する

が、残りは上昇蒸気流とともに破断孔を模倣した出口

ノズルから流出する。

この平板状垂直流路でのCCFLの解析モデルとして

簡単化のため、まず、既報と同様の相変化が否

の場合を考え、注水ノズルからの部分で平均厚さ

の液膜が両壁に沿って流下する場合を考える。流路全

体での蒸気の運動量の釣合いを考えるに当たり、気液

界面で気液の速度差に基づく界面摩擦損失（係数f_{i})と

液膜流の壁面摩擦損失（係数f_{w})を考慮し、かつ、

直接流路に注入される注入水の運動量を考慮すると、

以下の式が得られる[詳細は、文献(13)参照]。

\[
\frac{f_{i}}{(1-x)^{3/2}} \left[j_{i}^{2} + \left(\frac{\rho_{i}}{\rho_{w}} \right)^{1/2} (1-x) j_{i}^{2} \right] x
\]

\[
+ \frac{f_{w}}{x^{2}} j_{w}^{2} + \frac{1}{2} \left(\frac{S}{L} \right) \frac{x}{(1-x)} j_{w}^{2}
\]

\[
+ \frac{1}{2} \left(\frac{S}{L} \right) \frac{x}{(1-x)} j_{w}^{2} = x + \frac{S}{L} \left(\frac{W S}{A_{i}} \right) j_{w}^{2} \quad \text{(1)}
\]

ここで、x=2δ/Sであり、A_iは注入水ノズルの断面

Fig. 1 An illustration of CCFL phenomena in a vertical annular channel during the loss-of-coolant accident of PWR

Fig. 2 A schematic model of CCFL phenomena in a planar-type channel simulating vertical annular channels[14]
積である。上式左辺の第1項は、気液速度差に基づく気液界面の摩擦損失を、第2項は落下水の壁面摩擦損失を、第3、4項は流路内での気液の運動量を、また右辺の第1項は流路全体での水量を、第2項は注水水の運動量を、および示す。上式には、流路形状の効果として、流路長Lと流路ギャップSおよび周長Wが含まれている。また、j^*_a, j^*_iの代表長さとして、下記に示すようにSを用いる。

$$j^*_a = \frac{j^*_i}{\sqrt{g (\rho_l - \rho_s) / \rho_s}} (x = a, l) \quad \cdots (2)$$

注入流量以上に水が落下することはないので、式(1)で有意な解となるのは、$j^*_a \leq j^*_i$の場合である。

次に、注水水がサブクーリングを有する場合を考える。このとき、注入水のサブクーリングの効果は、蒸気を凝縮させ、上昇蒸気流量を低減させるとともに、凝縮した蒸気流量の分だけ流路内の落下水流量を増加させることである。この凝縮の程度を示すパラメータとして、凝縮の効果がまったくない場合を零とし、凝縮効果が100%の場合を1で示す凝縮係数kを用いる。流路内のエネルギーの釣合いから、凝縮によるj^*_aの減少分は、$k \Delta T \Delta x / \rho_l (\rho_l - \rho_s)$となら、逆に$j^*_a$の増加分は、$k \Delta T \Delta x / \rho_l$となる。そこで、簡単化のためこの$k$を用いてサブクーリング水が注入された場合のCCFL時の運動量の釣合い式を考えると、式(1)をもとに以下の式が導かれる。

$$\frac{f \cdot j^*_i}{(1-x)^2} \left[(j^*_a - k \cdot \Delta T \Delta x / \rho_l)^2 + (j^*_i / \rho_l)^2 \right] / x^2 + \frac{f \cdot j^*_i}{x} j^*_i (1 + k \cdot \Delta T \Delta x / \rho_l)^2 \left[\frac{1}{2} \left(\frac{S}{L} \right) j^*_a - k \cdot \Delta T \Delta x / \rho_l \right]^2 + \frac{1}{2} \left(\frac{S}{L} \right) j^*_i (1 + k \cdot \Delta T \Delta x / \rho_l)^2 \right] + \frac{1}{2} \left(\frac{S}{L} \right) j^*_a \left[\frac{1}{2} \Delta x (1 + k \cdot \Delta T \Delta x / \rho_l)^2 \right] = x + \frac{S}{L} \left(\frac{W S}{A_i} \right) j^*_a \quad \cdots (3)$$

kの特性として、注水水量が少なく蒸気量が多いとき1に近く、逆に注水水が多く蒸気量が小さいとき零に近いと考えられる。式(3)で用いるj^*_aの相変化を伴わない場合の平板状流路の解析で用いたと同様、以下の式を簡単化のため用いる。

$$f = 0.008 \left[1 + m (\delta / D_l)^n \right] \quad \cdots (4)$$

ここで、

$$n = 1.63 + 4.71 \frac{Bo}{Bo} \quad \cdots (5)$$

である。

また、f_{wi}についても同様に、

$$f_{wi} = A_i \cdot Re_{wi}^n \quad \cdots (6)$$

の形を用い、液膜流れの層流、遷移域、乱流に対応するのである。

$$Re < 2000 \quad (層流) \quad A = 16.0, \quad B = -1.0$$

$$2000 < Re < 4000 \quad (遷移域) \quad A = 1.76 \times 10^{-10}, \quad B = 2.32$$

$$Re > 4000 \quad (乱流) \quad A = 0.314, \quad B = -0.25$$

を用いる。

表1 Major test conditions of existing experiments investigated in this study

<table>
<thead>
<tr>
<th>Channel Configuration (mm)</th>
<th>Pressure (MPa)</th>
<th>Injected Water Temperature (℃)</th>
<th>Injected Water Flux j^*_i, m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length L Width W Gau S</td>
<td>460 910</td>
<td>0.1</td>
<td>100 0.43 2.62</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>2.1</td>
<td>0.4 1.0 5.23</td>
</tr>
<tr>
<td></td>
<td>12.7</td>
<td>1.0</td>
<td>0.3 1.2 2.77</td>
</tr>
<tr>
<td></td>
<td>25.4</td>
<td>0.6</td>
<td>0.4 1.8 1.85</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.2</td>
<td>0.2 2.2 2.77</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.1</td>
<td>0.1 1.0 0.81</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>0.1</td>
<td>0.1 1.0 0.49</td>
</tr>
</tbody>
</table>
3. 実験結果の検討および
解析結果との比較検討

3-1 実験結果の検討
図3, 4に、表1に示した流路ギャップが12.7 mmと25.4 mmの場合のCCFLに及ぼす注水水のサブクーリングの効果を調べた実験結果16)を\(j_t \)と\(j_r \)の関係として示す。図3, 4で, \(j_t , j_r \) は、式(2)で与えられる。また、図3, 4で白抜きの記号で示す実験結果は、注入水温が100℃で相変化がない場合であり、それ以外の記号は、サブクーリングを有するものである。同一記号の実験結果は注水水流量すなわち\(j_{ri} \)および注入水温が同じ実験を示し、図3, 4中の垂直線は点Bで示す注入水量がすべて落下する状態（Complete Dump）を示す16)。点線CC', DD'等は、同一の注入水量、注入水温条件の実験でのComplete Dump点を結んだものである。また、点Aは上昇蒸気圧によってまったく注水水が落下しない状態（Complete Bypass）を示す16)。図3, 4から、他の条件が同一のとき、注入水流量が大であるほど、また、サブクーリングが大であるほど、同一の上昇蒸気
流\(j_r \)に対し落下水流量\(j_t \)が大になることがわかる。検討の結果、このサブクーリングの効果は、著者が先に提案した実験式で、流路周長\(W \)、流路ギャップ\(S \)および注入水の運動量を考慮した相変化がない場合の以下の相関式16)

\[
j_t^{1/2} + mj_r^{1/2} = C \tag{9}
\]

ここで,

\[
m = \left(\frac{2.89 + 0.0267 W}{S} \right) \exp \left[-5.78j_r^{1/2} \right]
\]

\[
C = 0.7 + 0.00817 W
\]

\[
\tag{10}
\]

にサブクーリングの効果を加味して次式が得られた。\[X + Y = 1 \tag{11} \]

ここで,

\[
X = \frac{m}{C}j_t^{1/2}/\left[1 + 0.5(\rho_p/\rho)_t \right]^4 j_r T_{\text{in}}
\]

\[
Y = \frac{1}{C}j_r^{1/2}/\left[1 + 0.5(\rho_p/\rho)_t \right]^4 j_r T_{\text{in}}
\]

であり、\(X, Y \)中の\(m, C \)は式(10)で与えられる。

式(11)と実験結果との比較を図5に示す。比較的良好な一致が得られていることがわかる。

3-2 解析結果と実験結果の比較検討
図6に、流路ギャップが25.4 mmで注入水温が100℃の場合の実験結果と解析結果との比較16)が示されている。注入水流量がパラメータに取ってあるが、いずれの注入水流量に

Fig. 3 Experimental results of the effect of inlet water subcooling on CCFL in a planar type channel of channel gap \(S = 12.7 \text{ mm}^{16} \)

Fig. 4 Experimental results of the effect of inlet water subcooling on CCFL in a planar type channel of channel gap \(S = 25.4 \text{ mm}^{16} \)
対向二相流落下水制限に及ぼす注入水サブクーリング効果に関する研究

Fig. 5 Comparison of the effect of inlet water subcooling between the existing experimental results and the correlation newly proposed based on the previous correlation of saturated water injection

Fig. 6 Comparison of CCFL between analytical results and previous experiments under saturated water injection in a vertical planar type channel of channel gap $S=25.4$ mm

Fig. 7 Comparison of CCFL between analytical results and previous experiments under subcooled water injection in a vertical planar type channel of channel gap $S=12.7$ mm

Fig. 8 Comparison of CCFL between analytical results and previous experiments under subcooled water injection in a vertical planar type channel of channel gap $S=25.4$ mm

対しても、解析結果と実験結果との一致は良好である。

図7に、流路ギャップが12.7 mmで、注入水温が66℃、無次元注入水流量$j_{l,\text{in}}$が0.46の場合の、式（3）の解析結果と実験結果の比較を示す。図7で曲線Aは、式（3）中の凝縮の効果の程度を表すパラメータkとして0.5を取り、変数xの包絡線として得られたものである。kの効果を見るためkとして0.75、1を取った場合が曲線B、Cである。図7中の点D、EはおのおのComplete Dump、Complete Bypass点を示す。図7から、$k=0.5$の場合の解析結果が点Dと点Eの間ではかなりの差異が見受けられるものの、$k=0.5$の場合がD(Complete Dump)およびE(Complete Bypass)点の実験結果を最もよく表していることを
対向二相流下水制限に及ぼす注入水サブクーリング効果に関する研究

図9 二相流下水制限条件の比較と計算結果と既往実験との比較

図10 二相流下水制限条件の比較と計算結果と既往実験との比較

とがわかる。DとEの間の実験の傾向をよく示すことができない理由については、今後さらに検討する必要がある。

図8に、流路ギャップが25.4 mmで、注入水温が19℃、無次元注入流水速が0.16の場合の解析結果と実験結果との比較が示されており、曲線A、B、Cは、おのおのおのkが0.5、0.75、1の場合である。傾向は図7と同様である。特に、Complete Bypass点については解析と実験はよく一致している。Complete Dump点については、$k=0.5$でなく0.75のほうがよく合う傾向にある。

図9、10に、$k=0.5$とした場合のComplete Dump点についての解析結果と実験結果との比較が。おのおのおの流路ギャップが12.7 mmと25.4 mmの場合について示している。図9、10で、解析結果と実験結果との間にかなりの差が見受けられるものの、傾向は非常によく合っていることがわかる。図11に、Complete
Dump点における$\frac{d^2\phi}{dx^2}$と$\frac{d^2\phi}{dz^2}$の関係について，$k=0.5$とした場合の解析結果と実験結果との比較が示されている．解析結果は，実験結果をよく予測できることを示している．しかし，$\frac{d^2\phi}{dx^2}$が1.5を超えると同時に$\frac{d^2\phi}{dz^2}$に対し解析値の$\frac{d^2\phi}{dz^2}$は小さくなる傾向にある．これは，kの特性としてすでに述べたように，注入水が大で蒸気流量が少ないと，kは小さくなり，$k=0.5$を採用できなくなるためと考えられる．

一方，図12はComplete Bypass点における$\frac{d^2\phi}{dx^2}$について，$k=0.5$とした場合の解析結果と実験結果の比較を示す．図7，8でわかったように，解析結果と実験結果の一致はおおむね良好である．

4. 結 言

従来，実験的にも解析的にもほとんど解明されていなかった注入水がサブクーリングを有し，垂直流路で凝縮が生ずる場合の対向二相流下の落下水制限現象について，既存の実験結果についてサブクーリングの効果を定量的に評価するとともに，先に著者が提案した流路全体での気液相の運動量の釣合いに基づく解析モデルで，注入水のサブクーリングが上昇気流の流量を低減し，その結果，落下水量が増加することを考慮した解析を行い，既存の実験結果と比較検討した．

その結果，まず，主要パラメータである流路長，流路ギャップ，注入水流量および注入水サブクーリングの効果を適切に表す実験式を導出することができた．一方，得られた解析結果は，サブクーリングが大であるほど同次無次元掛け蒸気流速に対し，落下する水の無次元掛け流速は実験結果と同様増すこと，および対向二相流下の落下水制限現象の落下水が露の条件と注入水がすべて落下する条件の間の差異では実験値よりもかなり小さなための落下水量を与えるものの，落下水が露の条件と注入水がすべて落下する条件については，実験結果を比較的よく予測することがわかった．

文 献

(11) 数学者, 機論, 60 574, B(1994), 2175-2176.
(12) 数学者, 機論, 60 575, B(1994), 2566-2572.
(13) 数学者, 機論, 60 576, B(1994), 2686-2694.

---331---