Thermal Analysis of Compact Electronic Equipments
(1st Report, Thermal Analysis of Notebook PC)

Katsumi HISANO, Hideo IWASAKI,
Masaru ISHIZUKA and Sadao MAKITA

This paper describes the thermal analysis of a notebook personal computer (PC). A numerical analysis was carried out for the whole domain of the PC, excluding the display. The numerical model includes Si chips, packages, printed circuit boards (PCBs), casing, etc. Thus the model includes almost all the parts of the computer. To reduce computational load, the thermal analysis was divided into two stages. The calculation was performed on an EWS. Measured and calculated temperature rise of the electronic parts showed good agreement. This led to the conclusion that the present thermal analysis method can be a useful tool in the design of notebook PCs.

Key Words: Heat Transfer, Heat Conduction, Electronic Equipment, Notebook PC

1. 緒 言

電子機器の性能は年々高くなっている。処理能力向上に伴う発熱量増加により、熱的な検討は機器実現のための重要な設計目的となってきている。

図1は1989年以降発表されたラップトップパーソナルコンピュータ（パーソナルコンピュータ）のノートPCおよびサブノートPCに搭載したプロセッサの能力を示す。能力は1992年ごろ使用されたプロセッサ能力を100とした相対値である。より速く、より小さくという要求が従来のデスクトップ形、ラップトップ形からノート形、サブノート形へとサイズを縮小しながらもより速いプロセッサを採用するトレンドとなっている。能力の高い素子は消費電力が大きくなり、1992年発表されたPCのプロセッサ発熱量は1Wにみたかったが、1994年には6Wを超えた。小さなノートPCに発熱の大きい素子を実装するため、発熱量、発熱密度とも大きくなり、放熱の考慮は設計上欠かせない項目となる。

Fig. 1 CPU performance of notebook PCs
Fig. 2 Heat dissipation of A4 size cabinet under natural convection

Fig. 3 Heat transfer through horizontal fluid layer

\[h : \text{熟伝達率} \quad \text{W/(m}^2\cdot\text{K}) \]
\[k : \text{熱伝導率} \quad \text{W/(m} \cdot \text{K}) \]
\[L : \text{長さ} \quad \text{m} \]
\[Nu : \text{ヌセルト数} \]
\[Pr : \text{プラントル数} \]
\[Q : \text{熱量} \quad \text{W} \]
\[Ra : \text{レーリー数} \]
\[T : \text{温度} \quad \text{K} \]
\[W : \text{幅} \quad \text{m} \]

3. モデル化の手法

3.1 伝熱モードの限量

図3は水平流体層の熟伝達特性を表す。X軸は壁面間距離をLを代表長としたレーリー数Ra, Y軸はヌセルト数Nuである。

\[Ra = GrPr \]
\[Gr = g\beta(T_1 - T_2)L_0^3/\nu^2 \]
\[Nu = \frac{kL}{h_{\text{wall}}} \]

ただし、\(T_1, T_2 \)は壁面の温度、\(h \)は壁面間温度差で、壁面間の熱伝達係数によって定義した熱伝達係数である。\(g, \beta, \nu, Pr, k_{\text{wall}} \)は重力加速度、体積膨張率、動粘性係数、プラントル数及び流体の実験数である。

レーリー数が小さいとき、流体内の温度分布は外因による浮力よりも流体の粘性が支配的になるため、壁面間において対流は発生せず、熱の移動は伝導支配になるため、ヌセルト数は定数1とする。

小形電子機器では部品間のすきまが極力小さくなるよう設計を行う。例えば、複数枚の基板をもつノートPCの基板間すきましては5〜10mm程度で、部品間の伝熱にかかわるレーリー数は温度差が30K程度であると300〜700程度となりレーリー数の臨界値よりも小さい。

レーリー数が大きくなり自然対流が発生する場合においても対流が発生する領域が限定されていれば対流の影響を含んだ等価的な熱伝導率\(k \)を使用することによ
小形きょう体の熱解析（第1報）

\[k = k_{0} \cdot Nu \]

物体間の伝熱は放射によっても行われる。平行な二
平面間の熱放射において、壁面間距離が面の広がりに
足して十分小さいとみなされるとき、すなわち、形態
係数が1とみなせるとき、平面間の熱の移動量Qは
伝導と放射の和として表現できる。

\[Q = A \left(\frac{k}{L} \left(T_{1} - T_{2} \right) + \sigma_{0} \varepsilon_{1} \varepsilon \left(T_{1}^{4} - T_{2}^{4} \right) \right) \]

\[f_{a} = \frac{1}{1 + \frac{1}{\varepsilon_{1} + \varepsilon_{2} - 1}} \]

\[\varepsilon, \varepsilon_{1}, \varepsilon_{2} \] は二面間の放射率。\(\sigma \) はステファン・ボルツマン
定数である。

熱放射による機器の熟反応は温度の四乗に依存する。次
式のように壁面に垂直な方向の実効的な熱伝導率 \(k_{0} \)
を用いて温度の一乗の差の式で放射を扱えれば計算
上便利である。

\[Q = \frac{A k_{0}}{L} \left(T_{1} - T_{2} \right) \]

式（5），（7）より \(k_{0} \) は以下のよう求められる。

\[k_{0} = \sigma_{0} \varepsilon_{1} \varepsilon \left(T_{1}^{4} + T_{2}^{4} \right) \]

この式を用いて壁面間の空気の熱伝導率を決定すれば
放射の影響を考慮することができる。

\(T_{1} \) と \(T_{2} \) は絶対温度であり、常温の環境で使用され
る機器では例えば壁面温度差が 30 K 程度のときであら
ともに \(T_{1} \) と \(T_{2} \) の差は 10%で、近似的に \(T_{1} \) と \(T_{2} \) を適当な \(T_{0} \)
と \(T_{2} \) の中の値に置き換える差は小さい。

\[k_{0} = \sigma_{0} \varepsilon_{1} \varepsilon \left(T_{0}^{4} + T_{2}^{4} \right) \]

式（9）において、ギャップ \(L \) の小さいときには熱
放射よりも熱伝導が支配的となり、放射は距離が長
い場合に \(k_{0} \) に対して影響をもつ。しかしこれが大き
いとき壁面間を移動する热量は少なく、しかしこの
場合に比較して空気の熱伝導率は非常に小さいため、解
析の結果に与える放射の影響は小さい。本報では \(T_{0} \)
を機器内の平均的な温度 310 K と仮定したが、放
射を無視しても解析の結果として得られる温度はほと
んど変わらない場合が多い。

空気の熱伝導率は、温度 300 K での値 [0.026 W/(m·K)] を基準としたとき温度に対して指数関数的な
変化を仮定し、

\[k_{0} = k_{0}[(T/300) ^{0.75} \]

とした。この式は 300〜1000 K 程度の間で 4%程度の
誤差をもつ。実際の部品の測定に基づき放射率は,

金属面：0.1
その他の部品面：0.9

を用いた。

以上のようあるい部体の伝熱を熱伝導として扱
うことにより、流体解析に比較して計算に要求され
る計算能力を小さくすることができる。

3.2 解析の局所化

図 4 にノート PC に使用され
る主要部品の外すと、部品の熱伝導解析に必要と考え
られる最小メッシュ間隔を示す。例えばケーシング
は外寸が 300 mm 程度あるが、厚みは少 \(2 \) mm 程度であ
り、最大を表現するには最小 \(2 \) mm 間隔のメッシュを
用いないければならない。LSI バックケースの解析ではシ
リコンチップ内部の構造を無視し、ダイヤ状のものをモデ
ル化する場合においても、部分的に 50 \(\mu \)m 程度のメ
ッシュの細かさが必要で、これはケーシング外寸に対
して 4 倍したほど小さい。

PC の全長部を網羅する数値モデルを作成するため
には、物体中の細かに構造を含む部分に細かかメッシュ
を使用しなければならない。細かな構造を含む部品
の周辺はメッシュ間隔を小さくし、他の部分を粗
モデル化することにより計算量を小さくすることが可
能であるが、電子機器は部品がケーシング内部に分散
して置かれるため PC 全体を一括して解析しようと思
ると、メッシュ数は非常に大きくなる。

そのため、図 5 に示すように解析を分割する。細か
な構造については細かかメッシュを使用せずに領域
を扱う数値モデルをより詳細に解析し、より広い領

--- 227 ---

Fig. 4 Dimension of components and mesh

Fig. 5 Modeling concept
小形きょう体の熱解析(第1報)

4. せまい領域の解析

4-1 ディスクドライブバッテリーパック 図6〜8にFDD, HDD, バッテリー(12)バッパックの数値モデルを示す。ディスクドライブの場合は、ユニットに挿入されたディスクが回転している場合には厳密には円周方向の実質的な熱伝導率は定常計算では非常に高いとみなせるが、簡略化のためディスクは停止したモデルとした。本報では上位レベルの解析において、部品は均質な物質でできた単純なブロックとみなし、単純なブロックとしての熱伝導率は図9に示すように部品の各軸方向に熱を通させ、数値的に測定する。

4-2 キーボード キーボードはアルミニウム製のシールド板が付属するプラスチックベース板をベースとして、上面に多数の樹脂製キートップ付スイッチが取付けられている。キーボードはベース部分とベース表面に与えられるキー列の影響を含む熱伝達率に置き換え、きょう体モデルに

Floppy disk

Fig. 6 Numerical model of FDD

Heat flow

Isothermal surface

Adiabatic surface

Fig. 7 Numerical model HDD

Battery pack casing

Cell

Equivalent heat transfer coefficient

Base

Heater

Adiabator

Fig. 8 Numerical model of battery pack

Fig. 9 Calculation of thermal conductivity

Fig. 10 Modeling of keyboard

Fig. 11 Heat transfer from keyboard

-228-
小形キューブ体の熱解析（第1報）

Fig. 12 Measurement of horizontal conductivity of PCB

Fig. 13 Numerical model

Fig. 14 Numerical model

Fig. 15 Printed circuit boards in CPU module

Fig. 16 Boundary conditions

Fig. 17 Measurement location

使用する。図10にモデル化手法と等価な熱伝達率の測定方法を示す。キーボード面に面状のヒータを張り付け、加熱する。ベース板表面の平均温度とキーボードから上方向に発散する熱量より、熱伝達率を求めた。キーボード面への熱の逃げはヒータ面に取付けた断熱材面の温度差より求めている。

打鍵しない状態での測定結果を図11に示す。横軸はキーボードの短辺長Lを代表長さとするレイリー数、縦軸はヌサート数である。○印は測定結果で、図11中上側の実線は上向き平板の典型的な自然対流熱伝達を示す。キーボードからの放熱は上向き平板の自然対流熱伝達よりも20%程度低い。これは、キーの大部分が熱伝導率の低い樹脂で構成されているため、拡大伝熱面ではなくベースからの自然対流を妨げる物体として働いていると考えられる。

4-3 配線基板

PCBはガラス-エポキシを材料とする絶縁層と銅皮を仮に作成された配線層による多層構造の板である。配線層は10μm幅であり、数値モデルにこれらをすべて含まざるが難しいため、水平方向の熱伝導率を実験的に求めた。基板全体の解析では均質な材料の板とみなした。

5. きょう体全体の解析

図14に同じ体のモデルを示す。メッシュ数は207,515(121×49×35)、図14、15に示すようにCPUポート付近は細かくメッシュを切りパッケージ形状など細かな構造を模擬しているが、基板寸法前側の部分は粗いメッシュを使用し、個別の計算・実験で得られたディスクドライプ等のマクロな熱特性を導入した。

境界条件を図16に示す。キーボードには実験により
求めた熱伝導率を与え、他のきょう体表面には典型的な平板の層流自然対流熱伝導を与えた。レーレー数に含まれる固体表面温度は各面の平均温度を使用し、環境温度は300 Kとした。

キーワード：

- CPU: $Nu = 0.45Ra^{0.25}$
- できょう体底面: $Nu = 0.27Ra^{0.25}$
- その他の面: $Nu = 0.54Ra^{0.25}$

ディスプレイの発熱に起因する空気の流れによるきょう体表面の熱伝達への影響は無視した。

6. 結 果

結果を図18に示す。動作条件はCPUとディスプレイコントローラ最大稼動、FDDは待機、HDDはディスクリは回転しているがデータ入出力のない状態。他の節はディープ対される発熱量とした。CPUとディスプレイコントローラ（図18中DC）はパッケージ上部中央、HDDは底面中央。A、Bは図17に示すきょう体表面温度である。計算時間は50 MIPSのEWSを使用して約40 min。

7. 結 言

小形電子機器内部の部品間の空気の流れが小さくないために自

然対流が発生しかたいうことを利用し、熱伝導計算で機器全体を扱う熱解析手法を開発した。

計算値を少なくするため、ディスプレイドライプ等、ユニットとして扱いやすい部品は均質なブロックとして扱ったときのマクロな熱伝導率をきょう体全域の計算とは分離して行った。

本手法により温度を数℃以内で予測できた。熱解析手法として十分な精度をもち、機器開発時の温度予測手法として有効であることがわかった。

文献

(3) 久野勝美・岩崎秀男・ほか2名, 小型密閉電気の熱設計, 機講論, (1993), 258-260.

(8) 甲藤好彦, 伝熱概論, (1964), 172-174, 電気学会.

(9) 日本機械学会編, 伝熟工学資料改訂第4版, (1986), 77-79, 丸善.

(11) へいphase・北山直氏, 伝熟工学, (1984), 124, 森北出版.