リブ状粗面をもつ長方形流路の助走区間における熱（物質）伝達特性

広田真史*1, 藤田秀臣*1, 橋澤義*2
中村俊孝*3, 田中雅*4

Heat (Mass) Transfer Characteristics in the Entrance Region of Rib-Roughened Rectangular Ducts

Masafumi HIROTA, Hideomi FUJITA, Hajime YOKOSAWA, Toshitaka NAKAYAMA and Tadashi TANAKA

Experimental study has been conducted on local heat (mass) transfer characteristics in the entrance region of rectangular ducts with/without rib roughened long side walls using the naphthalene sublimation technique. Three rib heights and four rib pitches have been tested. In the smooth duct, the laminar boundary layers are first formed near the duct entrance and then begin to transit to turbulent ones from the duct corners. The turbulent region develops from the corner toward the duct center as the flow proceeds downstream; therefore, the local mass transfer rates change in both the streamwise and spanwise directions. In the rib roughened duct as well, the local mass transfer rates vary in not only the streamwise but also the spanwise directions very near the duct entrance; the location of the maximum local mass transfer rate caused by the flow reattachment moves upstream as the adjacent wall is approached. It has been found that the influence of rib height on the local mass transfer rate is more pronounced near the corner than in the duct center region.

Key Words: Forced Convection, Heat Transfer Enhancement, Transition, Entrance Region, Rectangular Duct, Rib-Roughened Wall, Naphthalene Sublimation Technique

1. 緒 言

熱交換器などの熱輸送を伴う機器では、矩形断面をもつ流路がしばしば使用される。こうした流路の入口付近では、流れ内の速度場および温度場は未発達な助走状態にある。このような矩形流路助走区間における熱流動特性の詳細は不明の点が多いが、機器の小形化に伴い、その解明はより重要となると考えられる。一般に、断面の縦横比が比較的小さい長方形流路の助走区間では、各壁面から発達する境界層が互いに干渉するため、流れ内の速度・温度場は三次元的特性を示し、局所伝達率は流路軸方向のみならず流路幅方向にも複雑に変化すると予想される。

また熱輸送機器では、流路内壁をリブ状の粗さ要素で粗面化し、対流熱伝の促進および機器の性能向上を図ることがある。こうしたリブ状粗面による矩形流路内の伝達促進に関しては、おもに完全発達流において従来多くの研究が行われてきた。しかし、助走区間内の局所伝達特性に注目した研究は少なく、またそのほとんどは断面の縦横比が大きい二次元的な流路を対象としており、縦横比が小さい長方形粗面流路の助走区間に関する研究は見当たらない。リブ状粗面をもつ長方形流路の助走区間では、二次元流路の場合同一であると局所伝達率は壁面の影響を受けて流路軸方向のみならず流路幅方向にも変化すると考えられ、その詳細を明らかにすることは伝熱学的に興味深い。また実用機器では、理想的な二次元流路が使用されることとはむしろ少なく、長方形粗面流路内の助走区間における局所伝達特性を把握することは工業的にも有意義と考えられる。

そこで本研究は、リブ状の粗面壁をもつ長方形流路の助走区間において、詳細な局所伝達特性を実験的に明らかにすることを目的とする。局所伝達率は流路軸および流路幅方向に急激に変化することが予想されるため解析的には難しいが、測定面を設けた管路伝熱実験を行った。助走流路には、断面の縦横比が 2:1 の長方形流路を用い、速度場と温度場が同時発達する助走区間において測定を行った。まず、基本的な全壁ともに平滑面からなる流路において断面伝熱伝達率分布を測定し、助走区間における境界層の発達について検討する次

--- 199 ---
リブ状粗面をもつ長方形流路の助走区間における熱物質伝達特性

に関し、流路の長辺壁面をリブにより粗面化した流路において、粗面壁上の局所物質伝達特性を明らかにし、リブ流路助走区間の特徴について考察する。

記号

- B: 流路矩辺の長さ (=25 mm)
- d_m: 水力直径 (=33.3 mm)
- h: リブ高さ
- $\frac{d_m}{h}$: 局所物質伝達率 [式(2)]
- p: リブ間隔
- PP: 送風機能力 [式(6)]
- Re: レイノルズ数
- Sh_a: 局所シャウド数 [式(4)]
- Sh_{ax}: 流路軸方向平均シャウド数 [式(9)]
- Sh_a: 平均シャウド数
- Sh_{at}: リブ流路の平均シャウド数
- Sh_{ax}*: 一定送風機能力下におけるリブ流路の平均シャウド数
- Sh_{at}*: 平滑流路の平均シャウド数
- Sh_{ax}*: 一定送風機能力下における平滑流路の平均シャウド数
- Sh_{lp}: ピッチ平均シャウド数 [式(8)]
- X_1, X_2, X_3: 座標系 (図3参照)
- X_p: 上流側リブの中心から下流方向へ測定した距離 (図14〜16参照)
- λ: 管摩擦係数 [式(5)]
- λ_r: リブ流路の管摩擦係数
- λ_s: 平滑流路の管摩擦係数

2. 実験装置および方法

2.1 実験装置 図1に、実験装置の概要を示す。供試流体は室温空気であり、送風機による空気温度の上昇を避けるために、流路系を吸込式とした。空気、測定流路の上流に設けた整流部 (i) を通過後に、測定流路 (ii) に流入する。実験では、流路入口における流入条件を明確に規定するために、流入空気の速度分布が断面全域にわたり均一になるよう、ベルマウスノズルを用いて整流した。速度分布の詳細については後述する。測定流路内でナフタレンを昇華させた後、ナフタレン蒸気を含んだ空気は、ベンチュリノズル (iii) を経て送風機 (iv) により屋外に排出される。

図2に測定流路の詳細を示す。測定流路は、断面が50 mm X 25 mm (縦横比 = 2:1、水力直径 d_m = 33.3 mm) の長方形、全長 600 mm ($=18d_m$) の直線流路である。物質伝達の測定部は、測定流路の上流半分 (全長 $L = 300$ mm = 9 d_m)、整流用ベルマウスノズルのすぐ下流に設定した。図2(a)に示すように、この測定部においては、流路の両長辺壁をナフタレン面 (昇華面) とし、両短辺壁はアクリル樹脂製平板で製作した。伝熱的には、それぞれ等温加熱壁および断熱壁に対応する。ナフタレン面を支持するフレームは、内部ひずみを除くための熱処理を施したアルミニウム板製であり、ナフタレン面はこのフレームにナフタレンを直接録込みすことにより作成した。ナフタレン面の表面性状は、録込み時の録型温度と溶融ナフタレン温度に非常に敏感であるため、録込みは恒温槽中において厳密な温度管理の下で行った。

リブ流路による実験の場合には、図2(b)に示すように、ナフタレン面(長辺壁)上に円柱状の粗さ要素を設置して粗面とし、短辺側は平面とした、粗さ要素は黄銅製であり、直径すなわちリブ高さは0.5、1.0、2.0 mmの三とりに変化させた。これらの粗さ要素は流路流に垂直に等間隔で設置され、リブ状の粗面を形成する。リブ間隔 p と高さ h の比 $\frac{p}{h}$ は、各リブ流路について $p/h = 10, 20, 40, 60$ の四とおりに変化させた。リブの固定は、両短辺壁に各リブの高さと間隔に合わせた溝を設け、そこにリブをはめ込むことにより行った。リブとナフタレン面との密着は、実験前後の目視観察により確認した。なお、両者

![Fig. 1 Schematic diagram of the experimental apparatus](image1)

![Fig. 2 Details of the test duct](image2)
の間にすさまざまがある場合は、リブと接する位置に相当するナフタレン面の昇華量が非常に大くなり、また局所シュワット数がリブのすぐ下流で著しく高い値を示すため、容易に検知することができた。図3は平滑流路に設定した座標系である。X軸は流路の中心軸に一致しており、その原点は物質伝達測定部の入口、すなわちナフタレン面前縁に設定した。ナフタレン面はX軸に直交し、X軸方向を流路幅方向と定める。物質伝達実験はレイノルズ数Re=5×10^4から6.5×10^4の範囲で行った。ここで、Uとvはそれぞれ断面平均速度および空気の動粘度を示す。

物質伝達実験に先立って、物質伝達測定部入口(Xi/δi=0)における速度分布を熱線流速計により測定し、結果を図4に示す。図4の左半分は主流平均速度U、右半分は変動速度強度根号3の分布であり、縦軸はUに対する無次元値を表す。主流速度は流路断面全域にわたって一様な分布を示し、また乱れは平均速度の0.4％以下と非常に小さい。したがって、空気は一様速度分布の層流状態で測定流路に入流するといえる。以上の結果より、本実験においては、速度境界層は濃度境界層が測定流路入口からほぼ同時に発達することが理解される。

2.2 データ処理 局所物質伝達率h_dは、ナフタレンの局所昇華深さδから算出される。δの値は、物質伝達実験前のナフタレン面の表面状態の差から求めた。ナフタレン表面形状の測定には、分解能1μmのディジタルリニアゲージを用い、マイクロコンピュータ制御の二次元移動装置により主流軸(X軸)方向に0.2mm、流路幅(Xy軸)方向に2.5mmの間隔で面上を移動させ、ゲージからの出力をマイクロコンピュータのメモリ上に直接記録された後、数値処理される。

単位表面積あたりの局所物質輸送速度m(Xi,Xz)は、リニアゲージで測定される局所昇華深さδ(Xi,Xz)から次式で与えられる。

\[m(X_i, X_z) = \rho_s \cdot \delta(X_i, X_z) / \tau \] ……… (1)

ここでρ_sとτは、それぞれ固体ナフタレン密度と昇華実験時間である。局所物質伝達率h_d(Xi,Xz)は、次式により定義した。

\[h_d(X_i, X_z) = m(X_i, X_z) \cdot (\rho_{sv} - \rho_{sn}(X_i)) \] …… (2)

ρ_{sv}はナフタレン面表面におけるナフタレン蒸気密度であり、表面温度に対する飽和蒸気密度と仮定した。\(\rho_{sn}(X_i) \)はXiの位置における空気流中の平均ナフタレン蒸気密度であり、次式により求めた。

\[\rho_{sn}(X_i) = \int_{ Xi }^{ Xi+10 } 6 m(X_i, X_z) dX_i / Q \] …… (3)

ここで、Bは図3に示すように流路短辺長の長さ(=長辺長さの1/2)。Qは空気の体積流量である。本論文では、局所物質伝達率h_d(Xi,Xz)を、次式で定義される局所シュワット数Sh_d(Xi,Xz)により無次元化表示した。

\[Sh_d = h_d \cdot d_i / D \] ……… (4)

Dは空気に対するナフタレン蒸気の拡散係数を示す。なお、局所物質伝達率の値に含まれる不確かさは、約6％と推定される。

3. 実験結果と考察

3.1 平滑流路における結果 最初に、平滑流路の長辺壁上の局所物質伝達特性について検討する。図5にレイノルズ数Re=3.5×10^4で得られた局所シュワット数Sh_dの主流方向変化を、流路幅方向の位置Xi/Bをパラメータにとって示す。なお、長辺壁の二等分線上(Xz/B=0)におけるSh_d分布の対称性は極めて良好であったので、本論文ではナフタレン面平面(0<Xz/B<1.0)における結果のみを示し、Xi/Bの値が大きい上方向の図ほど、流路短辺壁に近い位置のSh_d分布を示している。Sh_dはナフタレン面前縁面(Xi/δi=0)に極大値をとるが、濃度境界層の発達に伴い下流方向へいったん減少する。速度変動の測定か
図6は、Reを6.5×10^4に増加させた場合のSh_d分布である。分布は定性的に上述の場合と類似であるが、乱流遷移によるSh_dの増加開始位置は、図5に比べて全般に上流側へ移動している。Reの増加に伴い乱流遷移がより上流で始まる傾向は、円管内助走区間と同様である。

次に、平滑流路内の乱流遷移開始位置について、詳細に検討する。一般に平滑流路の層流境界層熱伝導においては、板前線からの距離X_1を代表値にした厚みなし層流層比NumberRe_a=h^2/X_1/ν（h：層流層厚さ）、Sh_d=K_{D}で（レイノルズ数Re_a=U_{x}X_1/νの1/2乗に比例する）。そこで、上に示した結果をシーット数Sh_{a}=h_{a}X_{1}/DとRe_{a}により再整理し、Re_{a}^1/2 Sh_aが直線分布から逸脱し始める点を、乱流遷移の開始点と定義した。なお、境界層の乱流遷移開始点は時間・空間的に揺らぎていると考えられるが、ここに定義した遷移開始位置は、昇華実験時間2にわたり時間平均値を示すといえる。図7は、Re_{c}に対するSh_{a}の変化を、Reをパラメータにとって整理した一例である。乱流入口付近ではSh_aはRe_{c}^1/2に比例して増加するが、Re_{c}^1/2=400〜500でSh_aは急激に立ち上がっている。このSh_{a}の急激に増加し始めるRe_{c}を乱流遷移の開始点と定め、そのX_1の位置を各Reについて
てナフタレン面の平面上（0<\(x_{2}<1.0\)）にブロットして図8に示した。図8中灰色部分は、\(Sh_{x}\)が\(Re^{0.25}\)に比例した低\(Sh_{x}\)領域に対応している。この層流物質伝達領域が、流路入口から下流に向かって三角形に分布していることから、層流境界層の乱流遷移は流路隅部から始まり、下流に向かうにつれて遷移領域が流路中央部へ発達していくことが理解される。また図6にも示したように、乱流遷移は\(Re\)が大きくなるほど、より上流で始まっている。

3・2・1 平均シャウド数と管摩擦係数 図9は、リブ流路における平均シャウド数 \(Sh_{a}=h_{a}d/N\) の\(Re\)に対する変化である。\(h_{a}\)はナフタレン面上にわたって積分平均した物質伝達率であり、実験時間\(t\)中間に昇華したナフタレンの総量から求めた。図9中の実線は、平滑流路における実験結果である。一般にリブ流路の\(Sh_{a}\)は、リブ高さ\(h\)を大きくしリブ間隔\(p\)を高さの比\(p/h\)を小さくするほど、すなわち高いリブを密に配置するほど大きな値を示し**1**。平滑流路の1.7倍から2.6倍に達している。

図10は式で定義される管摩摺係数\(\lambda\)の分布である。

\[
\lambda=2\ell_{s}\left(-\frac{dp_{s}}{dX_{s}}\right)/\rho U_{s}^{2}
\]

静圧\(P_{s}\)は、流路短辺側に設けた圧力測定孔より測定した。上述した平均シャウド数の場合と同様に、\(\lambda\)もリブ高さが増しリブ間隔が減少するほど大きな値を示している。図9と図10の比較から、高いリブを使用することでより生じる流動抵抗の増加割合は、物質伝達の増加割合よりも大きいことが理解される。例えば\(h\)を0.5 mmから1.0 mmと高めた場合は、\(Sh_{a}\)は10%程度増加するのにすぎないが、\(\lambda\)は約45%増加している。

こうした傾向は、図11に示した平滑流路に対するリブ流路の物質伝達増加率 \(Sh_{av}/Sh_{av}\)と管摩擦係数増加率 \(\lambda_{av}/\lambda_{av}\)との相関から、より明確である。ここで添字 \(R\)と \(S\)は、それぞれリブ流路および平滑流路における値を示す。実験結果は図11の対角線より下側に分布しており、リブ流路における \(Sh_{a}\)の増加率は、\(\lambda\)の増加率よりも低くなっている。

以上の測定結果に基づき、送風機耐力同一にした条件下での、リブによる物質伝達促進の効果について検討した***。体積流量 \(Q\)の空気流を流路に供給するのに必要な送風機耐力 \(PP\)は、次式で表される。

\[
PP=\Delta P_{s} \cdot Q
\]

ここで \(\Delta P_{s}\)は測定流路入口と出口間の差圧を表す。\(PP\)は、管摩擦係数\(\lambda\)とレイノルズ数\(Re\)により、次のよう無次元表示できる。

\[
PP\propto \lambda \cdot Re^{0.8}
\]

リブ流路の\(\lambda\)は平滑流路に比べて著しく大きく、同一送風機耐力の条件下での、リブ流路における空気流量は平滑流路に比べて減少する。この流量減少を考慮に入れた上で、同一送風機耐力下での、平滑流路に対するリブ流路の平均物質伝達促進率 \(Sh_{av}/Sh_{av}\)を求めてみた。図12に、\(h=2.0\) mmに
おける結果を示す。Sh_{a*}/Sh_{as*} は送風機動力の増加に伴い減少するが、その値はつねに 1 以上を示している。すなわち同一送風機動力で比較した場合、流量が減少するにかかわらず、リブ流路の Sh_{a*} は平滑流路よりも大きく、リブによる伝熱促進法が有効であることが理解される。Sh_{as*}/Sh_{as*} の最大値は $p/h = 20$ の場合に認められるが、送風機動力の増加に伴い、p/h の違いによる Sh_{as*}/Sh_{as*} の差は減少している。なお、他のリブ高さの場合にも図 12 と同様の結果が得られ、Sh_{as*}/Sh_{as*} はいずれの h においてもほぼ同じ値を示した。

3.2.2 局所シャウド数分布 図 13 は、ナフタレン面半面上 ($0 < X/B < 1.0$) で得られた局所シャウド数 Sh_{a*} 分布の一例 ($h=1.0 \text{ mm}, p/h=20, Re=3.5 \times 10^6$) である。図 5 と同様に、横軸はナフタレン面半面から測った主流軸方向の距離であり、X/B の値が大きい上方の図ほど塩着短辺壁に近い位置での分布を示す。図 13 の底部の黑丸はリブの位置に対応し、図 13 中の実線は図 5 に示した平滑流路の Sh_{a} 分布を示している。リブ流路では、粗さ要素の配置に対応した Sh_{a} の周期的分布がナフタレン面半面域にわたって観察される。Sh_{a} はリブのすぐ下流で極小値、リブとリブとの間で極大値に達している。

局所シャウド数分布を詳細に検討するために、異なる p/h で得られたリブ 1 ピッチ間における Sh_{a} の分布を 1 枚の図にまとめて、図 14 ～16 (それぞれ $h=0.5, 1.0, 2.0 \text{ mm}$) に示す。いずれの分布も、流路入口から比較的遠い下流領域に相当する、$X/d = 7.2$ (測定全長 $= 9d$) から始まる 1 ピッチ間において、$X/B = 0$ の線上で得られた結果である。レイノルズ数 $Re=3.5 \times 10^6$ である。後述するように、この X 位置での Sh_{a} は流路幅方向には相似な分布形状を示し、実質的に二次元流路と同等とみなすことができた。幅の中间の

Fig. 12 Mass transfer increase ratios under constant pump power

Fig. 13 Global distributions of local Sherwood number in the rib-roughened duct ($h=1.0 \text{ mm}, p/h=20, Re=3.5 \times 10^6$)

Fig. 14 Local Sherwood number distributions between two ribs ($h=0.5 \text{ mm}, X/B=0, Re=3.5 \times 10^6$)

Fig. 15 Local Sherwood number distributions between two ribs ($h=1.0 \text{ mm}, X/B=0, Re=3.5 \times 10^6$)

Fig. 16 Local Sherwood number distributions between two ribs ($h=2.0 \text{ mm}, X/B=0, Re=3.5 \times 10^6$)
リブ状粗面をもつ長方型流路の助走区間における熱（物質）伝達特性

X_p は、上流側リブの中心から下流方向へ測定した距離であり、図14～16中の一点鎖線は各 p/h における下流側リブの位置を示している。ここに示した Sh_a の分布は、h と p/h の違いにかかわらず次のような共通の特性をもっている。すなわち、Sh_a は上流側リブのすぐ下流で最小値を示し、下流方向に増大した後、第1の極大値（図14～16中のA）に達する。この極大値は、リブをはく離した流れが再付着するために生じると考えられる。さらに下流に向かうにつれて、Sh_a は境界層の発達に伴って徐々に減少するが、下流側リブの直前に急増し、第2の極大値（図14～16中のB）を示す。この第2極大値の値は第1極大値よりも大きくなり、リブの直前に形成される小さい渦の影響により生じると考えられる。なお、両極大値とも、リブがよくなるほど大きな値を示している。

次に、リブ高さ h を同一に保ち p/h を変化させて得た Sh_a 分布の比較から、h を等しくした場合、はく離流の再付着に起因する第1極大値の出現位置とその値は、p/h に依存せず一定となることが理解される。またこの第1極大値は、図14に示す $h=0.5$ mm では $X_p/h≈8$ で、$h=1.0$ mm と 2.0 mm（図15および図16）の場合には $X_p/h≈4$ の位置で観察される。これらの結果から、上流側のリブではく離した流れが再付着する位置は、リブ間隔 p には影響されていないが、リブ高さ h に応じて変化すると考えられる。なお、以下の結果は、Re を変化させても同様に観察された。

一方、流路入口近傍の Sh_a は、上に示した比較的下流（$X_p/d_a > 7.2$）における分布とは異なる特性を示す。図17は、図15と同じ実験条件 $h=1.0$ mm、$p/h = 20, Re=3.5 \times 10^5$ において、最上流に位置するリブ1ピッチ間で若干 $0 < X_p/d_a < 0.6$ の Sh_a 分布を、流路幅方向の位置 X_p/B をパラメータにとって整理した結果である。図17中の矢印は、Sh_a が第1極大値に達する位置を示している。短辺壁に近い領域の Sh_a ほど、第1極大値は上流側リブに近い位置に現れており、したがって Sh_a 分布は流路幅方向に変化し、相似な分布形状をとらない。図18は、ナフタレン面の二等分線上（$X_p/B=0$）で測定した Sh_a の流路軸方向への変化である。図18中の“1st Section”は、図17と同じ上流のリブ1ピッチ間で $0 < X_p/d_a < 0.6$, “2nd Section”は $0.6 < X_p/d_a < 1.2$ (以下同様)に応じて示している。1st Sectionでの第1極大値は $X_p/h≈9$ に現れており、より下流のSectionになるほど第1極大値の出現位置は下流側へ移動している。5th Section（$2.4 < X_p/d_a < 3.0$）では、第1極大値は $X_p/h≈4$ に現れており、これは図15に認められる第1極大値の位置とほぼ一致している。なお、5th Sectionより下流では、Sh_a の流路幅方向への変化は少なく、定性的に相似な分布を示した。

図8に示したように、平滑流路の助走区間に広い範囲にわたって三角形状の層流物質伝達領域が現れ、Sh_a は流路幅方向に不均一な分布を示す。リブ流路の場合も、流入口近傍の比較的狭い領域（図17と図18）では $0 < X_p/d_a < 3.0$ の範囲で、Sh_a は流路幅方向に変化し非相似な分布形状をとる。これは、平滑流路に観察されたコーナ境界層の乱れの影響が、リブ流路の Sh_a 分布にも現れることを示唆している。図17および図18の結果より、リブ流路の入口近傍では、リブでよく離した流れは発達流の場合よりもさらに下流寄りの位置で再付着するが、流路壁近辺に近い領域ほど再付着点は上流側に移動して発達流の再付着位置に近づくと考えられる。すなわち、リブによるはく離流の再付着位置は、リブの高さのみではなく、流路壁上の境界層内の速度分布や乱れ強さに強く依存する。
リブ状短面をもつ長方形流路の助走区间における熱（物質）伝達特性

Fig. 19 Pitch-averaged Sherwood number （p/h = 20, Re = 3.5 × 10^6）

Fig. 20 Longitudinally averaged Sherwood number （p/h = 20, Re = 3.5 × 10^6）

とえる。なお、他の実験条件においても同様の結果が得られたが、Shδ分布の流路幅方向への不均一性は、h が小さく Re が高いほど広範囲にわたって観察された。

3.2.3 ピッチ平均シャウド数 以上に述べてきたリブ流路助走区間ににおける局所シャウド数分布の全体的特徴を把握するために、次式で定義されるピッチ平均シャウド数 Sh_b を求めめた。

\[
Sh_b = 1/p \int_{X_0}^{X_b} Sh dX \tag{7}
\]

ここで、X_0 は N 番めのリブの X_0 座標值であり、Sh_b はリブ間で積分平均された流路平均シャウド数を表すといえる。図 19 に、p/h = 20, Re = 3.5 × 10^6 を固定し、リブ高さ h を変化させた場合の Sh_b 分布を平滑流路の Sh_b 分布（実線）と比較して示す。Sh_b は流路入口で極小値を示し、その後流路を下流方向に進むにつれて徐々に増大している。発熱体間隔が小型に近い領域ほど、h の増加に伴う Sh_b の増大が顕著に現れる傾向が認められる。

次に、局所シャウド数の流路幅方向への変化を検討するために、Sh_e の流路幅方向平均値 Sh_e を求めた。

\[
Sh_e = 1/L \int_0^L Sh_e dX_e \tag{9}
\]

L は物質伝達測定部の長さ (=300 mm) である。図 20 に、Sh_e の流路幅方向への変化を示す。いずれの h においても、Sh_e は X_0/B = 0.7 で最大値を示し、流路間隔を下流方向に進むにつれて減少している。また図 19 にも認められたように、流路間隔の増加によって Sh_e の増大が観察される。すなわち、図 9 に示したようにリブ流路の平均物質伝達は h の増加に伴い増大するが、物質伝達速度に及ぼすリブ高さの影響は、流路中心部よりも流路間隔近傍で顕著に現れるといえる。

4. 結 言

（1）平滑流路の助走区間では、壁面に発達する層流境界層の乱流遷移が流路間隔部から始まり、下流に向かうにつれて遷移領域が流路中央部に成長する。このため、流路入口近傍には流 Sh_e の流路物質伝達領域が三角形状に形成される。

（2）平滑流路に対するリブ流路の管摩擦係数 λ_e の増加率は、平均シャウド数 Sh_e の増加率に比べて大きいため、同一風速条件の条件で比較した場合には、リブ流路の Sh_e は平滑流路よりも小さいが、p/h = 20 で最大の物質伝達促進率が得られる。

（3）リブ流路の比較的下流の領域（X_0/d_k > 7.2）では、局所シャウド数 Sh_e は流路幅方向に相似分布形状を示す。リブ流路は流路下流の再付着点近傍に第 1 極大値、下流側リブの直前で第 2 極大値が出現する。第 2 極大値の値、第 1 極大値よりも大きいが、第 1 極大値の出現位置は、リブ間隔により異なるが、リブ高さに応じて変化する。

（4）上記の領域より上流の流路入口近傍では、リブはどの位置でも流れの再付着が起こる第 1 極大値が流路間隔部近傍ほど上流に寄って現れ、Sh_e は流路幅方向に非相似な分布を示す。こうした Sh_e 分布の流路幅方向の変化は、リブが低く Re が小さいほど広い領域にわたって現れる。

（5）ピッチ平均シャウド数 Sh_b は流路入口の近傍で最大値を示し、下流方向に減少する。流路方向に平均化したシャウド数 Sh_e は、流路間隔部に近い位置 X_0/B = 0.7 で最大値をとる。リブによる物質伝達促進に及ぼすリブ高さの影響は、流路中心部よりも流路間隔近傍でより明確に現れる。

本研究を行うに際し、実験装置の製作にご協力いただけました。
だいた名古屋大学技官 白木尚雄氏および立花一志氏
に厚く感謝する。

文 献

(11) 日本機械学会訳 計画の不確かさ, (1987), 丸善。