スプール弁内の非定常流に関する数値解析
（高レイノルズ数域での動特性的モデル化）

早瀬敏幸*1，夏篤鵬*2，林 敬*1

1. 緒 言

油圧制御機器の基本的構成要素であるスプール弁については、従来より機械工学の分野で実験的、理論的研究が盛んに行われている。最近ではスプール弁内の非定常流の数値解析も行われており(5)，構造変化、スプール弁の静止の流れ場の変化を離散手法により解析し、また非定常流の形成の流体特性を知りたかった(6)。また大石らは、スプール弁の非定常流の特性を数値解析を行い、弁の挙動と流体力が非定常流の特性を明らかにした(7)。

さて、油圧制御器の制御において、スプール弁の圧力-流量特性は、通常変動としてモデル化されるが、近年の油圧制御器の高速化・高精度化の要求に伴い、その動特性が実際上無視できない場合も多い。そこで本研究では、実際の油圧流体における非定常流れについて数値解析を行い、その結果に基づいて、スプール弁の動特性をモデル化することを目的とする。著者らは既に、基本的な流体特性を動特性が二つの時定数によって記述できることを示し、その数値モデルを与えた(8)。さらに単純化した形状のスプール弁について、実際の使用条件に応じて小さな圧力範囲（レイノルズ数は250以下）で、その動特性が高レイノルズ数チリスの数値モデルを拡張して説明できることを示した(9)。

本研究では、動作圧力をより実際の使用条件に近い条件に設定して、レイノルズ数が2700程度までの範囲で非定常数値解析を行う。得られた数値解析結果に基づき、スプール弁流れの動特性を表現する数学モデルを、さらに得られている低い圧力範囲での結果と比較しつつ検証する。最後に、スプール弁流れから受ける軸方向流体力の非定常特性について検討する。

お も な 記 号

A_i	半径方向流路面積 $=2\pi r$
A_l	軸方向流路面積 $=\pi r_i^2 - \pi r_0^2$
A_c	スプール弁外形面積 $=2\pi r \cdot \gamma$
c_e	流量係数
D_h	水力直径 $=2(r_e - r_i)$
h_{y}, h_{z}	r, z 方向の格子間隔
l	半径方向流路の幅
L	半径方向流路間の距離
L'	スプール軸長さ

*1 原稿受付 1997年1月29日
*2 東京大学大学院
*3 本邦，東北大学工学部機械工学科

--- 76 ---
スプール弁内の非定常流に関する数値解析

2. 数値計算法

計算の対象領域および座標系を図1に示す。軸対称円筒座標系をとり、対応する速度成分を(u,v,w)とする。旋回流成分が発生しないものと仮定する。流体は非圧縮とし、ナビエ・ストークス方程式と連続式を基礎式とする。

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = -\frac{\partial p}{\partial x} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{\partial^2 u}{\partial z^2} \\
\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = -\frac{\partial p}{\partial y} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v}{\partial r} \right) + \frac{\partial^2 v}{\partial z^2} \\
\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{\partial p}{\partial z} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial w}{\partial r} \right) + \frac{\partial^2 w}{\partial z^2}
\]

(1)

本論文では長さの代表量をスプール半径r_e、速度の代表量をv_e/r_eとし、これに流体の密度ρを代表量として加えて、諸量を無次元化して示す（ただし、v_eは動粘性、圧力の代表量をρv_e/r_e、時間の代表量はr_e/v_eとなる。有次元量は全て~を付して示した）。

非定常計算の初期条件としては、全領域で圧力は0で、かつ流れは静止しているものとし、時刻t=0において、上流端断面上の圧力がステップ状に0からΔpに変化するものとした。また速度の境界条件は、壁面部分ではなし、流れ速度のr方向の勾配を零とした。なお、スプール弁変位は計算中一定であるとした。

本論文で用いた数値解析手法について、以下に述べる。不等間隔のスターグディグサツ系を用い、有限体積法に基づいて基礎方程式を離散化する。得られた差分方程式群は、SIMPLER法を用いて線形化する。

この数値計算法は基本的には前報と同様なものである。

本論文における主な変数は、計算格子点を前報の等間隔格子から不等間隔格子に変更したということである。これに備えて、対流項の取り扱いにおける二次精度のQUICKスキームを不等間隔格子系に拡張した。すなわち、図2の不等間隔格子系におけるコントロール・ボリューム境界c,wでの、任意の変数φの値φ_i,およびφ_nは、上流側の2点と下流側の1点における値を用いて、

Fig. 1 Geometry and coordinate system

Fig. 2 Control volume of one-dimensional non-uniform grid system
Table 1 Coefficients in QUICK scheme on non-uniform rectangular grid system

<table>
<thead>
<tr>
<th>A_n</th>
<th>$(x_i-x_0)(x_{i+1}-x_0)$</th>
<th>$(x_i-x_0)(x_{i+1}-x_0)$</th>
<th>$(x_i-x_0)(x_{i+1}-x_0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
</tr>
<tr>
<td></td>
<td>$(x_i-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_i-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_i-x_0)(x_{i+1}-x_0)$</td>
</tr>
<tr>
<td></td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
</tr>
<tr>
<td>B_n</td>
<td>$(x_i-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_i-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_i-x_0)(x_{i+1}-x_0)$</td>
</tr>
<tr>
<td>C_n</td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
</tr>
<tr>
<td>A'_{n+1}</td>
<td>$(x_i-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_i-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_i-x_0)(x_{i+1}-x_0)$</td>
</tr>
<tr>
<td></td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
</tr>
<tr>
<td></td>
<td>$(x_i-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_i-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_i-x_0)(x_{i+1}-x_0)$</td>
</tr>
<tr>
<td></td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
</tr>
<tr>
<td>B'_{n+1}</td>
<td>$(x_i-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_i-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_i-x_0)(x_{i+1}-x_0)$</td>
</tr>
<tr>
<td>C'_{n+1}</td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
<td>$(x_{i-1}-x_0)(x_{i+1}-x_0)$</td>
</tr>
</tbody>
</table>

式(2)で表現される。

$U_r > 0, U_r < 0$

$\phi = \phi_0 + \phi_1 + (B_n - 1)\phi_0 + (C_n - 1)\phi_1$

$\phi = \phi_0 + \phi_1 + (B_n - 1)\phi_0 + (C_n - 1)\phi_1$

$U_r < 0, U_r < 0$

$\phi = \phi_0 + \phi_1 + (B_n - 1)\phi_0 + (C_n - 1)\phi_1$

式(2)を用いた計算結果の係数

不等間隔格子系におけるQUICKスキームの係数

A_n, A_{n+1}, B_n, B_{n+1}, C_n, C_{n+1}（後は対応する速度U_r, U_rに

同順）は表2に示すように座標の関数である。等間隔

格子系の場合には, 式(2)は既報の結果と一致する。\cite{123}

式(2)の下限を付した項は生成項として取扱われ,反復計算の過程で前の計算結果を用いて評価される。

この表式は, Patankar の四つの基本ルール\cite{123}より求めた等間隔格子系の表式\cite{12}を拡張したものである。この

取り扱いにより, 反復計算の過程において, コントロール・ポリューム界面での流束の連続性を保証する

ため, 数値計算全体の安定性が向上する。数値解析手

法の詳細については既報\cite{123}で述べているので, ここでは省略する。

3. 計算結果と考察

3.1 非定常計算 計算条件を表2に示す。以下の

計算はすべて無次元量を用いて行ったが, 参考のため

油圧制御弁の代表的な値としてスプール半径R_0

を5mm, 動粘度$\nu = 5.5 \times 10^{-5} m^2/s$, 密度$\rho = 870kg/m^3$

とした場合の有次元量も表2に併記した。

非定常計算に先立って, 本計算手法の計算精度を確認

するための予備計算を行った。まず, 図1中に示した

ようにx=2の断面を上流端とした場合（前報\cite{101}と同

一の計算領域の場合）に三種類の等間隔格子系N_xN_y

(A) 50×80, (B) 100×160, (C) 200×320を用いて定常計算

を行った（表3参照）。スプール弁のメータリングオ

リフィス周囲の流線について, (A)と(B)ではかなりの

差が見られたが, (B)と(C)の結果にはほとんど差は

見られなかった。次に流れ場が局所的に急激に変化する

メータリングオリフィス近傍に格子点を集中させた不

等間隔格子系 (D) 55×100 を用いて定常計算を行った

結果, 格子系(A)と同程度の格子点数をもつ不等間隔

格子系により, 格子系(B), (C)とほぼ同一の流線が得られた。

次に図1に示した計算領域において, スプール変位ξ

Table 2 Computational condition

<table>
<thead>
<tr>
<th>Distance between inlet and outlet L</th>
<th>Nondimensional value</th>
<th>Dimensional value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>20 mm</td>
</tr>
<tr>
<td>Spool rod length L'</td>
<td>5.4</td>
<td>27 mm</td>
</tr>
<tr>
<td>Spool rod radius r_s</td>
<td>0.5</td>
<td>2.5 mm</td>
</tr>
<tr>
<td>Spool radius r_a</td>
<td>1</td>
<td>5 mm</td>
</tr>
<tr>
<td>Outer boundary radius r_b</td>
<td>8</td>
<td>40 mm</td>
</tr>
<tr>
<td>Pressure difference Δp</td>
<td>3.2×10^7</td>
<td>3.4 MPa</td>
</tr>
<tr>
<td>Residual at convergence</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Computational grid systems

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Steady (Test)</th>
<th>Unsteady</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spool stroke ζ</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>$N_x \times N_y$</td>
<td>50×80, 100×160, 200×320</td>
<td>55×100, 260×100, 140×130</td>
</tr>
<tr>
<td>Grid size h_i</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.025</td>
<td>0.0125</td>
</tr>
<tr>
<td></td>
<td>0.05(5z<7)</td>
<td>0.05(5z<7)</td>
</tr>
<tr>
<td></td>
<td>0.02(5z<5)</td>
<td>0.02(5z<5)</td>
</tr>
<tr>
<td></td>
<td>0.05(5z<5)</td>
<td>0.05(5z<5)</td>
</tr>
<tr>
<td></td>
<td>0.02(4z<8)</td>
<td>0.02(4z<8)</td>
</tr>
<tr>
<td></td>
<td>0.05(4z<8)</td>
<td>0.05(4z<8)</td>
</tr>
<tr>
<td></td>
<td>0.02(6z<8)</td>
<td>0.02(6z<8)</td>
</tr>
<tr>
<td>Δt</td>
<td>10^{-20}</td>
<td>0.000001</td>
</tr>
<tr>
<td>CPU time [s]</td>
<td>2.3</td>
<td>13.5</td>
</tr>
</tbody>
</table>

NII-Electronic Library Service
スプール変位ξ=0.05の場合の流線の時間変化を図3(a)～(c)に示す。時間tが小さい程度は、よく離は生じないが[図3(a)]。やがてメータリングオリフィスの下流にはく離渦が発生する[図3(b)]。流量は時間とともに増加し、t=0.0003においてほぼ定常値に達しているが、渦領域の流動パターンは時間とともにさらに拡大し、時刻t=0.01でほぼ定常状態となる。なお参考のため表2の基準値を用いて、無次元時刻t=1に対応する有次元流量を計算するとt=1.0526でV=0.455m/sとなる。

一方、スプール変位の大きいξ=0.2[図4(a)～(c)]の場合は、時間tが小さい間は、ξ=0.05の場合と同様に流線の形状に大きな差は見られないが[図4(a)]。時間の経過とともに、流線は複雑に変化する[図4(c)]。メータリングオリフィス部に注目すると、時刻t=0.0014ではスプール開口部近傍に渦が発生しており、時間の経過とともに流れ方向に移動しながら徐々に発達する。t=0.014において、下流側の計算領域がほとんど渦領域になり[図4(c)]。やがて渦領域は下流端断面に達する。

3.2 スプール弁動特性の理論モデル スプール変位ξの種類の値に対して、スプール変位ξとレイノルズ数との関係を図5に示す。ξを増やすとレイノルズ数すなわち定常流量は増加する。本計算条件では、ξ=0.075以上で、メータリングオリフィス部で発生した渦領域が次々に下流側に移動するようになり、流れは定常状態におちつくことはない。これは、流量の増加にとも
流れる速度の安定化と、乱流変の過程に対応するものと考えられるが、本計算応用対称流れを仮定しているため、厳密な意味での乱流変とは異なる。前報において、レイノルズ数の比較的小さい場合（$Re<250$）に、流れ場の構造の変化に対応する定数数が、一定状態の乱流線の再付着点距離を用いて表わすことを示したが、流れ状態が一定ならない場合前報の範囲（$Re>1200$）では、上記のモデルをそのままの形で用いることはできない。そこで、本論文では、非定常計算における渦領域の最大の半径方向長さを用いて定数のモデルを定義する。

渦領域の最大半径方向長さ R_e とスプール変位ξとの関係を図 6 に示す。R_e は最初ξとともに増加するが、ξ が 0.075 以上で一定値となる。これは、上に述べたようにξ が 0.075 以上ではオリフィス流れ全体が渦領域となるため、$R_e=\tau_\xi=7$ とすることによると。

非定常数値計算結果より求めた流量 q と渦領域の半径方向長さ R_e の時間変化を、それぞれの定常値を添字 S に付したデータを正規化して図 7 に実線で示す（破線で示した理論計算の結果については後述する）。図 7(a)のスプール変位$\xi=0.05$ の場合は、流量 q が$t=0.005$ 程度まで速やかに増加した後、$t=0.004$ 程度までゆるやかに変化し一定値に近づき、渦領域の半径方向長さは流量の変化に比して緩やかであり、$t=0.01$ 程度で定常値になる。一方、図 7(b)の$\xi=0.2$ の場合も$\xi=0.05$ の場合と同様の結果が得られるが、$t=0.001$ 前後で流量変化のオーバーシュートが見られることから、流量が一定値に達した後も振動的に変化し続ける点が異なっている。これらの結果は、既報に準拠したように、2 つの時定数を用いて説明することがができる。

図 5 に示すように、実測と流れ場構造の時間変化に相当する時定数τ_ξ, τ_ξ は、それぞれ次式で与えられる（3）。

$$\tau_\xi = \frac{q_s}{(dy/dt)_{s}}$$
$$\tau_\xi = \int_0^\infty (2\pi \xi \xi / q_s) \, d\tau$$

ここで γ は慣性長合と呼ばれ、次式で与えられる。

$$\gamma = \frac{A^3}{2\pi} \left[\frac{1}{1} \ln \frac{E}{\xi} + \frac{1}{1} \ln \frac{E}{\xi} + \frac{1}{1} \ln \frac{E}{\xi} \right]$$

ただし、ξ はゲーテリングオリフィス下流域の軸流部の等価長さである。また τ_ξ の定義式中の $r_m(=\tau_\xi + R_e)$ は渦領域の最大半径位置である。なお、前報では、ゲーテリングオリフィス下流域の再付着点位置をr_m と用いた。これは、レイノルズ数が小さい場合には本報の定義法と一致する。

これら 2 つの時定数を用いて、流量 q と渦領域の半径方向長さ R_e の時間変化が正規化して図示される。

$$q / q_s = 1 - \alpha e^{-\alpha \xi} - (1 - \alpha) e^{-\alpha \xi}$$
$$R_e / R_e s = 1 - \alpha e^{-\alpha \xi} - (1 - \alpha) e^{-\alpha \xi}$$

上式は ξ のモードの割合α, α' を任意定数として含んでいるため、数値モデルの具体的な表式を得るために、数値解析結果を必要としていた。そこで、本報では、任意定数を含まない数値モデルを考える。

まず、流量の変化については、α のモードの寄与は小さいとして、次式が成り立つものとする（*を付した量はラプラス変換を表す）。

$$q / q_s = \frac{1}{1 + \tau_\xi s} \Delta p$$
$$R_e / R_e s = \frac{1}{1 + \tau_\xi s} \Delta p$$

また、渦領域の半径方向長さ R_e は、流量の変化に対して、1 次遅れ系として次式で表されるとする。

$$R_e / R_e s = \frac{1}{1 + \tau_\xi s} q_s$$
$$R_e / R_e s = \frac{1}{1 + \tau_\xi s} R_e s$$

式 (6), (7) が、任意定数を含まないスプール余弦特性の数値モデルである。式 (6) を式 (7) に代入すると次式となる。

$$R_e / R_e s = \frac{1}{1 + \tau_\xi s} \Delta p s$$
$$R_e / R_e s = \frac{1}{1 + \tau_\xi s} \Delta p s$$

Fig. 5 Reynolds number with spool stroke

Fig. 6 Radial size of vortex region with spool stroke
式(6),(8)で圧力のステップ状変化を考え المالية 1/8, 2/8 とおいて、逆ラプラス変換すると式(5)で q と R の時間変化が得られ、τ_q のモードの割合は次式で与えられる。

\[
\begin{align*}
\alpha &= 1 \\
\alpha' &= r_q(r_q - r_t)
\end{align*}
\]

\(\zeta\) = 0.05 および 0.2 の場合について、式(3),(4),(9)より求めた時定数と τ_q のモードの割合および各時定数に対応する周波数を表4に示す。なお表中には、前節の代表量に対する有次元数の値も参考のため示している。τ_q に対応するモードがかなり低い周波数範囲まで影響を与えることがわかる。

式(5)で用いて q と R の時間変化を求めめた結果を図7中に破線で示した。式(5)の理論モデルの結果は、数値計算結果とよく一致している。渦領域の時間変化(R/R_t)において、τ_q のモードの影響を考慮していない \(\alpha' = 0\) の結果と比較すると、本モデル(\(\alpha' \neq 0\))では、渦領域の時間変化における τ_q の初期時間遅れが大きく表現されていることがわかる。一方、流量の時間変化については、本モデル(\(\alpha' = 1\))は基本的には数値計算結果をよく表しているが、特に \(\zeta = 0.2\) において見られるオーバーシュートや、その後のゆるやかな流量変化を表すためには、τ_q のモードを考慮する(\(\alpha' \neq 1\))が必要がある。

時定数 τ_q と \(\zeta\) を種々のスプール変位 \(\zeta\) について求めたものを図8に示す。流量の変化に対する時定数 τ_q は \(\zeta\) とともに単調に増加する。一方、流れ場の変化に対する時定数 τ_q は最初 \(\zeta\) とともに急激に増加するが、\(\zeta > 0.075\) 以上ではほぼ一定値となる。これは、\(\zeta\) の小さい範囲では渦領域は \(\zeta\) とともに拡大するが、\(\zeta > 0.075\) 以上では、メタルリングオフフェック下流側の大渦渦領域で占められるため、渦領域の半径方向への拡大が生じなくなることによるものである。従って、\(\zeta\) の増加にともなう τ_q の値の増加は、対象領域の外周半径に依存する。また τ_q についても、式(4)より明らかのように、得られた結果は対象領域全体の慣性に依存している点に注意が必要である。

なお、本論文では、作動流体を非圧縮としているが、\(t = 0\) 近傍の非定常過程をより正確に模倣するには、流体の圧縮性の考慮が必要となる。流体の体積弾性係数 \(K\) と密度 \(\rho\) を、作動油の代表的な値を用いて、それぞれ 1.86×10^5 Pa, 870kg/m^3 とすると、圧力波の速度は \(c = \sqrt{K/\rho} = 1462\) m/s となる。この場合、上流境界からスプールまでの伝播時間は \((r_0 - r_t)/c = 2.39\times10^{-5}\) s となり、表4より \(\zeta = 0.05\) の場合には、時定数 τ_q の 1/3 程度

Table 4 Mathematical model constants

<table>
<thead>
<tr>
<th>(\zeta)</th>
<th>0.05</th>
<th>0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_q)</td>
<td>1.64×10^{-4} (7.44×10^{-5} s)</td>
<td>5.33×10^{-4} (2.42×10^{-4} s)</td>
</tr>
<tr>
<td>(\omega = 1/\tau_q)</td>
<td>6098 (13441 rad/s)</td>
<td>1876 (4123 rad/s)</td>
</tr>
<tr>
<td>(\tau_r)</td>
<td>2.11×10^{-3} (9.60×10^{-5} s)</td>
<td>6.22×10^{-3} (2.83×10^{-3} s)</td>
</tr>
<tr>
<td>(\omega = 1/\tau_r)</td>
<td>474 (1042 rad/s)</td>
<td>161 (353 rad/s)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\alpha')</td>
<td>-0.08</td>
<td>-0.09</td>
</tr>
</tbody>
</table>

Fig. 7 Variation of flow rate and radial size of vortex region

Fig. 8 Time constants with spool stroke
となる。

3-3 軸方向流体力の非定常特性 スプール表面における圧力およびせん断応力の分布から、スプールに作用する軸方向力（流体力）を求めた。まず、図1中のa, bで示したスプール両端面における圧力に起因する軸方向の表面力の時間変化を、スプール変位ζ=0.05と0.2の場合について求めた。結果を図9に実線で示す。次に、スプール表面におけるせん断応力に起因するz軸方向の表面力の時間変化を図9に破線で示す。スプールに作用する軸方向流体力は、圧力による表面力とせん断応力による表面力を加えたものとなり、その時間変化を図9に一点鎖線で示す（ただし、作用反作用の法則により、スプールに作用する流体力を考える場合には、zの負の方向に作用する場合を正にとる）。ζ=0.05と0.2のいずれの場合にも、せん断応力に起因する表面力は圧力によるものに比べて小さい。

ζ=0.05の場合、軸方向流体力はτで一定値の時間スケールで速やかに減少した後、τで一定値を保たれたが、その後は一定値をとる。ζ=0.2の場合は、τで達成した軸方向流体力はほぼ一定値となった後、圧力に起因する不規則な振動が持続する。

次に、スプールに作用する流体力を運動量理論を用いて計算する際の非定常特性を検討する。運動量理論によれば、図1中の破線で示したカレルボリュームにおける、z軸方向の運動量変化は次式で与えられる。

\[\frac{dM_z}{dt} = \rho \sum_{i} \int_{a} w u dS + \rho \sum_{i} \int_{a} v u dS \]

A B

式(10)中のAおよびBで示された運動量の時間変化に起因する流体力を、それぞれ「流体力A」および「流体力B」と呼ぶことにする。それらの時間変化をζ=0.05とζ=0.2の場合について図10(a),(b)に示す。実線は両者の和として求めた軸方向流体力で、圧力とせん断応力の分布より求めた図9の結果と一致する。図10(a),(b)とも、流量が大きく変化するτで一定値の時間スケールの間は、流体力Bの寄与が大きいが、その後は、流体力Aが支配的となる。なお、ζ=0.2における振動的な流体力の変化は、上流流体Bにによるものであることがわかかる。

次に、流体力Aの大きさに影響を与える噴流の流出角度について検討する。ζ=0.2の場合について、τ=0.01における、メータリングオリフィス近傍の圧力分布と流流図を図11(a),(b)に示す。オリフィス断面図11(b)中のcdにおける平均のz軸方向速度Wを次式で定義する。

\[W = \frac{\sum \rho w u_{w} \Delta x}{\sum \rho w u_{w} \Delta x} \]

上式の分子はオリフィス断面から流出する運動量に、
分母は流量に対応する。平均の流出角度θをオリフィス
断面の平均半径速度Uと式(11)の平均z軸方向速度W
のなす角度として次式で表す。

θ = tan⁻¹(U/W)(12)

図11(b)の流線図に式(12)から求めた流出角を示す。図
から、式(12)で定義したθが噴流の平均的な流出角度を
よく表していることが分かる。

弁開度ζ=0.05,0.2の場合について、噴流の流出角度θ
の時間変化を図12(a),(b)に示す。スプール変位ζ=0.05
の場合、流出角度は過渡的な変化の後ほぼ一定となるが、
ζ=0.2の場合には、流出角度は過渡的な変化の後も振
動的に変化している。

種々のスプール変位における流出角度と流体力を図
13(a),(b)に示す。スプール変位の増加とともに、流出角
度は減少し、流体力は増加する。また、ζ>0.2の範囲
で噴流の流出角度の変動が顕著となるが、流体力の変
動は、弁変位のより小さいζ=0.75から始まっている。

4. 結 言
油圧制御系の基本構成要素であるスプール弁を対象
として、実際の使用条件に近い圧力範囲の場合につい
て、スプール弁の圧力変化に対する軸対称流れの非定
常数値解析を行った。スプール弁の非定常特性を2つ
の時定数を用いて表現する数学モデルを任意定数を含
まず形で導出し、その有効性を数値解析結果との比
較により検討した。また、スプール弁に作用する軸方
向流体力の非定常特性に関して、圧力とせん断応力の
寄与、および運動量理論における2つの項の寄与に
ついて、数値解析結果に基づき検討した。今後は、実際
のスプール弁に見られる3次元的な流路形状の場合に
ついても検討を行う予定である。なお、本論文の数値
計算は東北大学流体科学研究所CRAY C916で行った。

参考文献
(2) 米水・米田・米田, スプール弁が開閉動作する場
合の二次元流れ, 油圧と空気圧, 23-7, (1992), 823-
829.
(3) 大野・上野・岡本・重水, スプール弁内流れの数値
シミュレーション, 日本油圧学会秋季油圧講演
(4) 早瀬・程・林, 笹オリフィス流れの過渡特性に関
する数値解析（第1報, 非定常流れの時定数）, 機
(5) 早瀬・程・林, スプール弁内の非定常流れに関する
(6) Patankar, S. V., Numerical Heat Transfer and Fluid
(7) Hayase, T., Humphrey, J. A. C. and Greif, R., A
Consistently Formulated QUICK Scheme for Fast and
Stable Convergence Using Finite-Volume Iterative
108-118.
(8) 日本油圧学会 (編), 油圧便覧, オーム社 (1989).