1. 緒言

高分子流体は、水や Glycine などの Newton 流体とは著しく異なる性質を有する。一はせん断速度に応じて粘度が変化する非 Newton 粘性を示すことであり、もう一つは絶えず変化するようなる弾性性質を有することである。

高分子物質の射出成形加工においては、様々な形状の流路が用いられるが、急縮小形状の流路内での流れが製品の品質に大きく影響を与える場合がよく見られる、従って流路の効率的設計を行うために、急縮小部での流れの機構を知ることは非常に重要である。

高分子溶液や融液などの粘弹性流体が、急縮小流れを流れるとき、収縮管の上流側に循環2次流れが発生することがよく知られている。流量増加にともなう遠の発生、成長については、多くの研究がある。それらのうち慣性力が支配的な流れでは渦が小さくなった後、不安定流れへと遷移し、粘弹性の力に支配される流れでは流れが成長し、不安定流れを引き起こすと報告されている。

発生の原因として、Cable と Boger(1)は第一法線応力差によって代表されるせん断特性を挙げている。一方、White と Kondo(3)は LDPE および PS 融液について伸長応力の過渡的な成長過程を調べ、伸長応力の急激な成長が渦の原因であることを経験的に示した。さらに、Nishi(4)は伸長粘度の stretch-thickening 性と渦の増大について詳しく述べている。また、流れの変動を定量的に調べた報告もみられる、Lapedra(5)はレザードップラー波流計による流速測定により、伸長粘度流れの臨界 Deborah 数を観察した。また、McKinley(6)は壁面近付近の流速変動により、定常流れから非定常流れまでを 5 つの領域（steady, periodic, period doubling, quasi-periodic, aperiodic）に分類している。

このように、急縮小流れの流れの研究は数多くなされているが、未解決の問題も多い。粘弹性流体の流れは流れの物性と流れの形状の影響を大きく受け、そのため今までは多くの現象が観察されている。また、渦の成長の原因は流体の伸長特性にあるとする報告が最近多いが、高分子溶液の伸長粘度測定が困難であるため、現在もこの現象を完全に解明するには至っていない。さらに現象まですべて理解されてきた急縮小流れにおける粘弹性流体の流れの研究では、そのほとんどが軸対称円管流れや矩形管流れの流れを取り扱ったものである。そこで本研究では、軸対称円管急縮小流れに加え、上流管と下流管の軸を偏
心させた流路を用い，実験によりそれらの流れ構造の違いを調べるとともに，工学的応用において心の流れを用いることが有益であるかどうか検討を行った。

2. 試料流体について

2.1 試料流体の特性

本研究では，高分子溶液として polyacrylamide（商品名 SANFLOC-AH70P，三洋化成工業製，以下 PAA と略記する）の 0.2，0.5wt%および1.0wt%水溶液を用いた。液温 20℃で測定した試料流体のレオロジー特性を図 1，2 に示す。これより明らかのように，PAA 水溶液はせん断速度が増加するとせん断粘度が減少する shear-thinning性を有することが分かる。

2.2 流動状態を表すパラメータ

本研究では，実験時のせん断速度を式（1）のように下流管の平均せん断速度 \(\dot{\gamma}_d \) で表す。

\[
\dot{\gamma}_d = \frac{\langle v \rangle}{R} \quad (1)
\]

ただし，\(\langle v \rangle \) は下流管平均流速，\(R \) は下流半径である。

実験はすべて 25℃の液温で行ったため，実験時のレオロジー特性値を求めるには温度補正が必要である。図 1 の粘度曲線をべき乗則モデルで表わし，式（2）に示す温度変動因子 \(a_T \) を用いて \(\eta = a_T \eta_0 (a_T)\dot{\gamma}_d \) から算出する。

\[
a_T = \frac{\eta(a_T)}{\eta_0} = \exp \left[\frac{2320 (T - T_0)}{T_0 - T} \right] \quad (2)
\]

ただし，\(T \) は実験時液温，\(T_0 \) は粘度測定時液温である。

一方，せん断応力 \(\tau \) と第一法線応力差 \(N_1 \) の関係は温度に関わらず面対数グラフ上では直線で表される（図 2））～（15）。そこで実験時の第一法線応力差は実験時のせん断応力 \(\tau = \kappa (a_T \dot{\gamma}_d) \) を用いて求め，緩和時間 \(\lambda \) は式（3）により算出する。

\[
\lambda = \frac{N_1}{2 \tau \dot{\gamma}_d} \quad (3)
\]

本研究では流動状態を示すパラメータにレイノルズ数およびレイネンベルグ数を用いる。

\[
Re = \frac{\rho \langle v \rangle}{\eta} 2R \quad (4)
\]

\[
We = \frac{\lambda \langle v \rangle}{2R} \quad (5)
\]

3. 実験装置および実験方法

本研究では流れ模様を調べるために固体トレーサー法および色素流速計の 2 種類の可視化実験を行い，またレーザードップラーレンジ計（以下 LDV と略記する）を用いて流速分布の測定も行った。

3.1 可視化実験

実験装置図 3 に，急縮小部を図 4 に示す。図 3 において，試料流体はまず reservoir に蓄えられている。上流部の円管長さは約 900mm あり，Head tank から Test section に流入する試料流体は絞り部の先端上流の領域をすり流速に発達した流れとなっている。本研究では 2 種類の Test section を使用した。すなわち固体トレーサー法による可視化実験では混合型，色素流速計による可視化実験では水平型流路を使用した。また，流量の調節は出口管のヘッドを変えことにより行った。

急縮小部は図 4 において上流管半径 \(R = 20 \text{mm} \)，下
3.2 LDVによる流速測定

LDV測定では、流路として上流管半径 \(R_{t} = 10 \text{mm} \)、下流管半径 \(R_{b} = 2.5 \text{mm} \) の円管を使用した。またレーザーの屈折を均一にするためにガラス円管を採用し、その他の部分はアルミで作成した。また流量は可視化実験と同様、ヘッド差により調節した。

本研究で使用したLDVは図5に示すように2本のレーザーの交差部をphotomultiplierで検出する1次元前方散乱システムである。frequency trackerおよびshifterにはそれぞれDISA 55N20、55N10を使用し、これにより得られた電気信号をA/D変換ボード(Canopus ADI-98)を介してコンピュータで流速データに換算した。また得られた流速データは即座に高速Fourier変換し \((n) \) 速度変動も同時に調べた。

4. 実験結果

4.1 定常流

4.1.1 濃の大きさ

各濃度の溶液における濃の大きさを図6に示す。濃の大きさは図4における壁面方向の \(H_{b} \) を上流管直径 \(2R_{t} \) で割った無次元量 \(\chi = H_{b} / 2R_{t} \) である。また、偏心流速では壁面方向で異なるため、その最大値を採用した。偏心流速では、\(\theta = 0 \) における下流管中心から

"Fig. 3 Schematic experimental apparatus."

"Fig. 4 Schematic diagram of the contraction geometry and observation planes."

"Fig. 5 Schematic diagram of laser Doppler velocimetry system."
Fig. 6 The largest vortex length χ as a function of Weissenberg number.

上流管壁面までの距離が軸対称流路よりも長くなるため
渦も大きく、軸対称流路と偏心流路でのその差は
わずかで、渦の大きさにそれほど大きな相違は見られない。
同様に流体の粘度による渦の大きさの差もほとんど
ない、すなわちこの結果は、渦の大きさが流路形状や流体
の粘度にはあまり影響されず、その時のレインノルズ数
によって支配されている事を示している。なお図 6 のよう
に両対数グラフで表示すると、渦高さ χ は直線的に増加
し、これらプロットに最小二乗法を用い、図中の実線
は $\chi = 0.510 We^{0.02}$、相関係数 $|r| = 0.961$とする。

4・1・2 淹の流れ構造

前述のように渦の大きさは各流路でそれほど差異はな
いが、図 7(a), 8(a) に示すように渦の内部の流れ構造には、軸
対称流路と偏心流路で大きな相違が見られる。定常流
において軸対称流路の渦は2次元構造を示している(図
7(a), 図 8(a))。しかし、偏心流路では図 7(b)に示すように
縮小面近傍において流路が曲線になることから、定常流
においても渦は3次元構造を有している。また渦の内部で
は、図 8(b)-i に示すように縮小面の狭い領域から広い領域
へと螺旋を描く流跡が存在する。すなわち偏心流路で
は、軸対称流路のように主流と渦が完全に分離した状態で
はなく、縮小面の狭い領域から主流の一部が渦内に流れ
入し(図 8(b)-ii), 縮小面の広い領域へと螺旋を描きながら
流れていく。そして縮小面の最も広い領域に達すると、
今度は渦の一部が主流内に流出して下流へと流れてい
う(図 8(b)-iii)。

このように本実験では螺旋の流跡が観察されたが、こ
の結果は 20%偏心、縮小比 4:1 の急縮小流路に対して
中村ら17)が行った数値計算結果とは定量的に一致してい
る。ただし、この数値計算でも螺旋流跡の発生メカニズム

Fig. 7 Flow patterns near the contraction plane for the
0.5wt% aqueous solution of PAA at $Re=0.565$, $We=2.44$.

(a) axisymmetric
(b) 20% eccentric

Fig. 8 Streak photographs of secondary vortex for the
0.2wt% aqueous solution of PAA at $Re=5.06$, $We=2.48$;
injection point of methylene blue solution ; (b)-i: $(r, \theta, z) =\left(R_e, 135\text{deg}, 60\text{mm} \right)$, (b)-ii: $(r, \theta, z) =\left(R_e, 180\text{deg}, 60\text{mm} \right)$,
(b)-iii: $(r, \theta, z) =\left(R_e, 10\text{deg}, 60\text{mm} \right)$.

については言及されていない。また、図 8(b)の撮影ではさら
に観察を続け、渦内の色素がすべて主流へと流出し、
最終的にもとの透明な状態に戻ることも確認した。

4・1・3 軸方向流速分布

図 9 は軸対称流路および 20%偏心流路の定常流に
おいて、上流管中心軸(縮小面から十分に離れた位置)を
通る流体に沿って上流から縮小面までの軸方向流速成分を示した図である。軸対称流れに対して、偏心流れの方が若干ながら流れの加速が緩やかになっているように見える。しかし偏心流れの場合、流速測定を行った流れはカーブしており、図9ではその流速方向の流速成分の変化を示していないため、現時点では軸対称流れと偏心流れの速度勾配を直接比較することはできない。

4.1.4 半径方向流速分布

定常流れにおいて、軸対称流れおよび20％偏心流れを用い半径方向流速分布を調べた。図10にこの結果を示すが、この図では上側の横軸が軸対称流れのr方向の座標値r/R_dを表し、下側の横軸が20％偏心流れの座標値r/R_dを示している。この結果より縮小面に比較的近い図(a)では軸対称流れに比べ偏心流れの方が形状が若干台形にになっていることが分かる。また図(c)の流速分布はBogerらの研究結果と定性的に一致しており、従って図(c)に示す領域では主流が壁面に広がるdiverging flowが生じていると考えられる。

4.2 定常流れから不安定流れへの遷移

4.2.1 流れ模様の変化

図11は20％偏心流れにおける0.5wt%PAA水溶液の流れ模様である。Wc=1.3の図((a)では流れは完全に定常流れであるが、これより少し流量の大きい図((b)になると上流管壁面近傍において渦と主流との境界付近に滑らかでない流跡が確認される。すなわち全体的に見れば定常流れであるが、この領域においてのみ局所的不安定流(small-scale instability)が発生していることが分かる。この局所的不安定流の領域は、流量増加にともない主流と渦の境界に沿って下流側に広がり図((c))。Wc=3.6の図((d)に至ると渦内のかなりの領域で局所的不安定流が顕

Fig. 9 Axial velocity distribution along the path line in the large upstream tube for the 0.2wt% aqueous solution of PAA at Re=1.13, We=2.34.
著に見られるようになる。そしてこの現象はいずれの溶液の濃度においても観察された。
さらに流量を増加させると全体の流れが不安定流へ移行する。

4・2・2軸方向流速の変化

0.2wt%PAA水溶液を用い、各流路において、流量を増大させながらLDV流速測定を繰り返した(図12)。流速データは流量増加とともに徐々に振幅が大きくなり((a)〜(c)), 不安定流へ移動すると流速データも大きく変動するようになる((d))。測定箇所を変えても同様の結果が見られた。またすべての流速データを高速Fourier変換して解析したが、周期的変動は見られなかった(例えば図13)。この結果はMcKinleyらの研究結果と定性的な一致しており、渦が成長した後不安定流へ移動する場合、流速の周期的変動は起こらない。

Fig. 12 Time series data of axial velocity components at the position of (£rR_e, θ/2R_e)=(0,0,8) for the 0.2wt% aqueous solution of PAA through a 20% eccentric contraction; (a)Re=0.191 We=1.45, (b)Re=0.852 We=2.17, (c)Re=1.82 We=2.66, (d)Re=3.91 We=3.28.

Fig. 13 Frequency spectrum of Fig.12(c) time series data.
4.3 不安定流の概要
図14は断面より480mmだけ上流側の半円断面を3秒間隔で連続撮影した結果である(間隔時間1秒)。不安定流においては、軸対称流と偏心流共に、主流(図14)で太線で囲んだ領域が主流であるが旋回し全体的には同じようなspiralizing flowの構造を示すが、主流の旋回の軌跡には、軸対称流と偏心流で相違が見られる。図15にその概略図を示すように、軸対称流路での主流は、流路壁面を対しより円形に旋回するが(図15(i)), 偏心流路では、周方向で渦の大きさが異なるため、渦の大きい側への主流は回り込むことができず、その結果上流、下流両円管の中心を結ぶ線上の振れは小さく、逆にそれと直角な方向の振れが大きい、いわゆる楕円形に旋回する(図15(ii))。かしさらに流量を増加させると、軸対称流と偏心流共に、spiralizing flowが顕著になり、偏心流路でも主流が流路壁面を対しより円形に旋回するようになる。そして最終的には、両流路ともrandomな流れへ移行する。

5. 結 言
本研究では軸対称流路および2種類の偏心流路を用い、実験により流れ構造の違いを調べた。
定常流において軸対称流路と偏心流路では渦の大きさや流速分布形状にはそれほど差異はなかったが、渦の内部の流れ構造には大きな違いがあることが分かった。
特に注目すべき点は、偏心流路の場合渦と主流が完全に閉じた状態ではなく、主流のごく一部が断面の狭い領域で渦内に流入し、螺旋状に断面の広い領域まで流れれた後、最も広い領域から主流に流出するという現象が見られることがある。すなわち渦内の流体はその内部に留まり続けることがない。この事実は工業上、渦内の流体の経時変化による品質劣化を防ぐという観点で非常に有効である。
本研究では、上流管壁面近傍において渦と主流との
境界付近に局所的不安定流 (small-scale instability) が見られた。この局所的不安定流は流れ全体が定常流の
かなり低流量ですでに観察され、この領域は流量増加に
ともない主流と渦の境界に沿って下流側に広がる。そして
さらに流量を増加させると流れ全体が不安定流に遷移す
る。すなわちこの局所的不安定流が最初に発生する流れ
の変動であり、この局所的変動が十分大きくなった後、こ
れをきっかけとして流れ全体が不安定流に遷移すると考
えられる。

本研究の不安定流れでは周期的変動はまったく観測
されず、すべて非周期的なものであった。McKinleyら(1)
は LDV 流速測定により渦が崩壊した後に不安定流へ移
行する形態の流れにおいて種の周期的不安定流を見
出したが、本研究のような渦が成長した後に不安定流へ
遷移する形態の流れではこのような周期的変動は発生し
ない。さらに不安定流では、軸対称、偏心両流路とも主
流が旋回する spiraling flow の形態を示す。そして比較
的低流量の不安定流においては、偏心流路の主流は精
円形の軌跡を描くが、さらに流量が増加すると両流路とも
主流は流路壁面を焼きように円形に旋回するようになる。

参考文献
(1) D.V.Boger, D.U.Hur and R.J.Binnington, Further
observation of elastic effects in tubular entry flow, J.
(2) K.Chiba, S.Tanaka and K.Nakamura, The structure of
anomalous entry flow patterns through a planar
contraction, J. of Non-Newtonian Fluid Mech., 42
(1992), 315-322.
(3) 中雄一, 急激に形状の変化する流路内における高
(4) P.J.Cable and D.V.Boger, A comprehensive
experimental investigation of tubular entry flow of
viscoelastic fluids: Part.1, AIChE J., 24(1978), 869-
879.
(5) P.J.Cable and D.V.Boger, A comprehensive
experimental investigation of tubular entry flow of
viscoelastic fluids: Part.2, AIChE J., 24(1978), 992-
999.
(6) P.J.Cable and D.V.Boger, A comprehensive
experimental investigation of tubular entry flow of
viscoelastic fluids: Part.3, AIChE J., 25(1979), 152-
159.
(7) J.L.White and A.Kondo, Flow patterns in
polyethylene and polystyrene melts during extrusion
through a die entry region: Measurement and
interpretation, J. of Non-Newtonian Fluid Mech.,
3(1977/1978), 41-64.
(8) S.A.White and D.G.Baird, The importance of
extensional flow properties on planar entry flow
patterns of polymer melts, J. of Non-Newtonian Fluid
(9) 森政教, 中村喜代次, K.Walters, 粘弹性流体の
急稜入流連入口部における渦の増大, 繊維機械学
会論文集, 42(1989), T179-T186.
(10) J.V.Lawler, S.J.Muller, R.A.Brown and R.C.
Armstrong, Laser doppler velocimetry measurements
of velocity fields and transitions in viscoelastic fluids,
(11) G.H.McKinley, W.P.Raiford, R.A.Brown and
R.C.Armstrong, Nonlinear dynamics of viscoelastic
flow in axisymmetric abrupt contractions, J. of Fluid
(12) R.I.Tanner, Engineering Rheology, 1988, Clarendon
Press.
(13) H.A.Barnes, J.F.Hutton and K.Walters, An
Introduction to Rheology, 1989, Elsevier.
(14) J.Ferguson and N.E.Hudson, The shear and
extensional flow properties of S1, J. of Non-
(15) D.M.Binding, J.Maia and K.Walters, The rheometry
of solutions of polysisobutylene in a mixed solvent, J.
of Non-Newtonian Fluid Mech., 52(1994), 137-152.
(16) 丹慶勝市, 奥村晴彦, 佐藤俊郎, 小林誠,
Numerical Recipes in C (日本語版), 1993, p379, 技
術評論社
(17) 中村喜代次, 森政教, 松村賢治, 偏心急稜小流
路における粘弹性流体の流れの数値解析, 日本機
械学会論文集, 63(1997), 1264-1269.