Behavior of Gasoline Hollow Cone Spray at Pressurized Surrounding Condition

Yusko NAKAYAMA*, Takuya SHIRAISHI, Toshiharu NOGI and Minoru OHSUGA

* Hitachi Research Laboratory, Hitachi, Ltd., 2529 Takaha, Hitachi-shi, Ibaraki-ken, 312-8503 Japan

Behavior of gasoline hollow cone spray at pressurized condition was studied. Surrounding pressure was varied 0.1 ~ 0.5 (MPa) which covers the surrounding pressure of compression stroke. The spray behavior was observed by LLS (Laser Light Scattering) method and LDV (Laser Doppler Velocimeter). Spray angle was narrower when fuel injection period was longer and surrounding pressure was higher. The pressure difference between spray inside and outside effects the spray angle change. The Spray pattern at pressurized surrounding condition was canged by the initial center distributed spray.

Key Words : Gasoline, Engine, Fuel Injection, Liquid Fuel, Nozzle, Spray

1. 緒 言

近年、ガソリンエンジンの高出力化、燃費向上、排気浄化を図るために筒内噴射エンジンの開発が進められている。筒内噴射エンジンでは、燃料を直接燃焼室内に噴射してクミ、燃焼させるため、粒径や形状などの噴霧特性が重要である。筒内噴射エンジンには2つの燃焼形態があり、高出力（均質混合）運転時には広く分散する噴霧で燃焼室内に均質に混合することが重要であり、低出力（成分混合）運転時にはキャビテ内における喷霧でピストンヒビビット壁面を介して混合気をプラグへ成層化することが重要である。現在、これらの要求を満たすインジェクタとして燃料を旋回させて微粒化するスワールインジェクタが用いられており、スワールインジェクタの噴霧は大気中では広く分散する中空円錐形状であり、加圧運転時の燃焼室としてコンパクトな形状となる1）。加圧運転でのスワールインジェクタの定常噴霧挙動に関しては根矢らの研究2)があるが、間欠噴霧挙動については十分に解明されていないとは言えない。

本報では、スワールインジェクタの加圧雰囲気での間欠噴霧挙動をレーザシートによる断面撮影、3次元LDV（レーザドップラ流速計）で解析し、噴霧形状を支配する因子を推定、加圧雰囲気下での噴霧形状制御方法について検討した。

2. 実験装置

図1は噴霧断面形状の撮影装置である。定容容器にインジェクタを取り付け、7(MPa)の圧力で燃料を噴射する。Arレーザをシリンジドリルカウンタでシート状に表示し、インジェクタ中心軸を含む断面に照射し、噴霧の散乱光をレーザの入射と直角方向から高速度ビデオカメラで撮影した。カメラのコマ送り速度は1/4500コマ/secである。インジェクタは噴射信号を駆動回路に与えることにより駆動され、噴射信号をトリガとし、噴霧の撮影を行った。高速度ビデオカメラに取り込んだ画像はビデオテープに記録し、パソコンで画像処理を行い、噴霧角度を算出する。加圧雰囲気での噴霧挙動の撮影は容器内に窒素ガスを充填して行った。
3 次元レーザドップラ流速計（LDV）の構成を図 2 に示す。Ar レーザをトラスミッタにより 477、488、515nm の 3 波長に分離し、分離した光を光ファイバを介して図のように 3 方向から喷霧に照射し、その交点の流速を計測する。喷霧の直断面と水平断面での計測を行うために、図のようにレーザ照射光部、リフレクタをトラバーサーで移動させた。

図 3 にスワールインジェクタから噴射された喷霧垂直断面形状と、3 次元 LDV により多点計測した喷霧の濃度断面および横断面（ノズル下流 50nm）の速度ベクトルを示す。条件は燃料噴射圧力 7[MPa]、噴射期間 1.0[ms]、雰囲気圧力は大気圧 0.1[MPa] とし、喷霧流速をトレーサーとして用いた。喷霧断面写真より、大気圧での喷霧は中空円錐形状であり、噴霧外周部には周囲気体との摩擦で巻き上げが生じている。噴射が終了すると、巻き上がった喷霧と終了直前に噴射された喷霧が一部で流れ込む。垂直断面の速度ベクトルから、噴射初期の噴口付近の流速は 40〜60[m/s]であることがわかる。噴射終了後には噴霧外周部が中心部へ向かう流れが発生し、周辺の空気を巻き込んで渦が形成される。横断面も同様で、喷射中は喷霧中心から外へ向かう流れであるが、喷射終了後には反対に内側へ向かう流れに変わる。スワールインジェクタの喷霧には、喷射終了後内部へ向かう流れが生じ、その流れが喷霧形成に影響を与えている。

図 4 にスワールインジェクタ（ノズル A）の喷霧形状を示す。噴射期間を 1,2,3,5 [ms]、雰囲気圧力を 0.1,0.5[MPa] に変化させた。撮影時間は、大気圧下では噴射終了時、加圧雰囲気下では喷射終了後 2.6ms である。大気圧と加圧雰囲気下の噴霧形状を比較すると、大気圧の中空円錐形状に対し、加圧では喷霧が内部に巻き込まれ、コンパクトな形状になる。また、噴射期間を長くすると大気圧でも喷霧が内部に引き込まれ、釣り鐘形状になる。加圧では、喷霧の貫通力が増大し、中心部に集中した燃料分布となる。
スワールインジェクタの噴霧において、噴射終了後に中心部へ向かう流れが生じること、脇圧を加圧した場合や喷射期間を長くした場合に噴霧が釣り鐘状となることの原因として、喷霧内外の圧力差が考えられる。喷射により噴霧内外の空気は下流に引張られ、内部の圧力が低下するため、圧力を平衡させる方向（噴霧の外から内）に流れが形成される。噴霧が終了すると噴霧の内と外を進める燃料の壁がなくなるため、圧力差で外部の空気が噴霧中心へ流れ込む。喷射期間を長くすることで噴霧が釣り鐘状になるのも、噴霧内外を進める燃料の壁が長く存在し、内部に向かう力が増大するためと考えられる。

これを検証するため、ノズルBとして内外の圧力差をなくした噴霧を作り、観察を行った結果を図5に示す。ノズルBはノズルAの噴射口下2mmの位置に幅1.5mmの圧力平衡板を配置し、噴霧を2分割して内部への空気導入路を作ることで噴霧内外の圧力差をなくしたものである。ノズルBの噴霧は噴射方向へ直線的に広がり、噴射終了後も中心へ向かう流れは生じない。噴射期間が長くなると噴霧の貫通力が増すが、喷霧形状は変化しない。

以上の結果を噴射期間と噴霧角度でまとめて図6に示す。喷霧角度は、噴霧の巻き込みが生じる位置のノズルからの距離Lと噴霧の幅Wから算出した。従来のノズルAでは喷射期間が長くなるとともに噴霧が狭くなり、脇圧力圧力の増加でも喷霧角が狭くなっている。一方、ノズルBの噴霧角は、脇圧力圧力、喷射期間によらず一定となり、噴霧に内外圧力差がない場合は、喷射期間、脇圧

4. 噴霧形状の制御方法

筒内噴射エンジンでは、均質運転時に噴霧角が高めに零散した噴霧、成層運転時にコンパクトな噴霧が要求される。特に成層運転時には噴射から点火までの時間が短いことに噴霧形状の影響を受けやすい。均質（大気圧）で喷霧角が広く保ちつつ、成層（加圧）の喷霧形状を変化させる方法について検討した。

前述のように、噴霧の内外圧差を変えることで噴霧形状を変化させることが可能である。内部の圧力を下げるためには、噴射初期に噴霧を引張るための噴霧を付加する（以下初期噴霧と略す）ことが有効と考えた。圧7に初期噴霧が噴霧形状に及ぼす影響を示す。ノズルCでは初期噴霧として噴射初期に中空円錐噴霧の中心部に分布する喷霧を加えた。構造は燃料に旋回力を与えるスパラに、
初期噴霧容積を設け、噴射初期に未燃焼燃料が押
し出されるように改良した。ノズル A と初期噴霧
付きのノズル C の噴霧形状を比較すると、大気圧
での形状に大きな違いはないが、加圧雰囲気ではノズル C の方が、中心に集中したベネトレーショ
ンの大きい噴霧となった。図 8 は初期噴霧量を変
えた場合のノズル内の燃料旋回力を示すスワール
数と噴霧角の関係である。上のグラフは大気圧の
結果であり、スワール数の増加とともに噴霧角が
広くなるが、初期噴霧量の影響は小さい。一方、
加圧では初期噴霧量の影響が大きく、初期噴霧量
が多いほど噴霧角が小さい噴霧となる。また、そ
の傾向はスワール数が大きいほど強まる。これは、
噴霧内外圧差の影響が加圧下の方が大きいことによ
ると推測される。
以上のように、初期噴霧の量を調整することに
より、大気圧下の噴霧角を保ちつつ、加圧下で
の噴霧形状を変化させることができた。

5. エンジン試験結果
これらの噴霧を実際の筒内噴射エンジンに適用
した場合の燃焼試験結果を図 9 に示す。単気筒の
500cc エンジンで、キャビティ付きピストンとス
ワールの空気流動で成層化する筒内噴射エンジン
の燃焼試験結果である。条件は 1400rpm、Pi:320kPa、A/F:40 であり、インジェクタのスワ
ール数は 4.36 一定とした。横軸が加圧で喷霧角、
縦軸がスモーク発生量と燃料安定性である。燃料
安定性は燃料の安定する噴射時期、点火時期の余
裕を表しており、値が大きいほど燃焼が安定であ
る。成層燃焼ではスモークの発生と燃料安定性を
両立することが必要である。初期喷霧量が多いすぎ
ると、ピストンへの燃料付着が多くなるためスモー
ークの発生量が増加する。初期噴霧量を最適化す
ることによって加圧下での噴霧角を適当、エン
ジンのスモークと燃料安定性を両立できた。

6. 結論
スワールインジェクタの加圧雰囲気における噴
霧挙動について解析し、以下の結論を得た。
1) 間欠中空円錐噴霧では、噴射期間が長く、
雰囲気圧力が高いほど筒長の噴霧形状となるが、
この形状は喷霧の内外圧差に依存すると考えら
れる。
2) 噴射初期に中空円錐噴霧の中間に分布する
初期噴霧を加えることで加圧下の噴霧形状を変
化させることができる。

5. 参考文献
1) 山本、棚田他、GDI エンジンのための喷霧
の特性解析、自動車技術会、自動車技術講演前刷刷
971(1997-5)、329
2) 河矢、佐藤、うず巻噴射弁の噴霧特性に及ぼ
す周囲空圧力の影響、機誌、70-581(1967)、27