
Takuji ISHIYAMA**, Masahiro SHIOJI, Naoki INOUE and Takeshi NISHI

**Kyoto University, Graduate School of Energy Science, Yoshida Honmachi, Sakyo-ku Kyoto, 606-8501, Japan

Detailed composition of exhaust emission from various gaseous fuels and gasoline was obtained including unregulated species by using an FTIR analyser, and dependency of the composition mainly on equivalence ratio was compared paying emphasis on relation between NOx and unburned species. The results show that NO emission is increased when liquefied petroleum gas and propane were used compared with the other gaseous fuels, and that NO concentration becomes comparable with NO when the charge mixture comes close to its lean limit. Trends of NOx and unburned hydrocarbon emissions are quantitatively similar for the gas fuels and gasoline, however, there are some differences on constituents in the unburned species.

Key Words: Internal Combustion Engine, Fuel, Spark Ignition Engine, Lean–Burn Engine, Exhaust Emission

1. はじめに

火花点火機関においては、希薄燃焼を行うことによって部分負荷の熱効率を向上させ、同時に窒素酸化物 NOx の抑制を図ることができると、特に、可燃範囲の広い天然ガスなどのガス燃料はこの燃焼法に適している。しかし、この時希薄化に伴う燃焼変動の増大が問題となり、これに対して、点火時期、圧縮比、空気流動などの最佳化や副室点火などの方法に精密な空燃比制御を組み合わせることが有効な対策である(1)-(3)。しかししながら NOx の十分な低減を図らざるを得ない希薄限界付近まで運転領域を広げると未燃化率の増大が避けられず、これを低減することが重要な課題である。また最近では排気中の特定有害成分を規制する動きが見られることや、排気サイクルの開発の観点から、排気をその構成成分に分離して計測することが求められている。

本研究ではこのような点から、希薄燃焼時の NOx および未燃排出ガスをフーリエ変換赤外分光(FTIR)分析計により計測し、未規制成分を含めた詳細成分の排出特性を明らかにした。特に、天然ガスおよび LPG などの実用ガス燃料とメタン、プロパンなど純粋なガス燃料について同一機関を用いて実験を実施し、これに液体燃料であるガソリンの運転結果を加えて、排出特性に及ぼす燃料種の影響を評価した。

2. 実験装置および方法

使用した試験機関は無過熱水冷シリンダ外サイクルディーゼル機関（シリンダ径 102mm、行程 106mm）を改造したもので、燃焼室を口縁比 50%の深皿型、吸気スワール比 n = 2.2 とし、給入車用点火プラグを用いて燃焼室外縁にて点火を行った。これは既報の均一混合気燃焼ガス機関の実験(1)において見出された、本機関において希薄運転時の燃焼変動を抑える最適な条件である。実験は機関回転速度 n を 1200rpm、吸気破りを全開（WOT）として当量比を変化させ、それぞれの最大トルク点火時期（MBT）において機関性能および排出特性を調べた。なお、排気触媒は使用してない。

燃料として、実用ガス燃料である天然ガス NG (CH4 88%, C2H6 6%, C3H8 4%, C4H10 2%), 液化石油ガス LPG (C3H8 38%, C4H10 62%), 酸性ガス燃料メタン CH4, プロパン C3H8, および市販レギュラー
ガソリンを用いた。なお希薄限界を広げた時の排気特性を調べるため、NG に水素 H2 を体積割合で 20% 混合した燃料も試験した。

実験装置の概略を図 1 に示す。ガス成分は質量流量計（Hastings FM-201）および絞り弁で流量設定した後、シリンダヘッド吸気口から約 30cm の位置に設けた LPG 車用ベンチュリー式混合器から吸気管内に供給した。ただし、NG、CH4、C4H10 は高圧ポンプから 0.25MPa まで減圧した後、また LPG は 1MPa の圧力でポンプ弁の液相から押し出した液体を加熱容器中に噴射して気化させた後に流量計へ導いた。ガソリンはシリンダヘッド直前の吸気管に設置した自動車用噴射弁により圧力 0.3MPa で吸気弁へ向かって喷射した。

シリンダ内圧力は圧電式圧力変換器（Kistler 601A）で検出し、ピークホールド回路で各サイクルの最高圧力 pmax を 100 サイクル測定して、その平均値に対する相対標準偏差 δ を求め燃焼変動を評価した。

排気ガス成分の測定には、フーリエ変換赤外分光（FTIR）分析計（堀場製作所 MEXA-4000FT）を使用した。表 1 に分析対象とした成分を示す。排気ガスは排気弁下流圧 600mm の位置から加熱パイプ（内径 6mm）により 113℃で恒温して流量 20ml/min で定常的に吸引し、本分析計に導いた。この流量は、実験の回転速度において、排気管内平均流速に対してほぼ等速吸引の条件である。

図 2 は、種々の当量比における試験機関の排気ガスを、本分析計と、従来から用いている化学発光（CLD）NO 分析計（ヤナワ ECL-30）および FID 全炭化水素分析計（ヤナワ KA-3CO）に導き、NO および THC 濃度を同時に測定して比較した結果である。

濃度表示は FTIR、CLD および FID 分析計ともにドレインベースとした。また FTIR 分析計による THC は、表 1 に示した炭化水素の検出濃度をメタン換算して合計したものである。図から NO 濃度はよく一致することがわかる。THC については、ガソリンを用いた場合に、分析対象外の希薄点成分の影響で FID 分析計の計測値が大きく表示されるが、天然ガス NG では、全濃度範囲に渡って良好一致を示す。すなわち、本分析計の測定値は従来から一般的に用いられている分析法とよく整合しているといえる。

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Analyzed Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPG, C3H8, NG, CH4, H2+NG</td>
<td>CO, CO2, NO, NO2, N2O, H2O, NH3, SO2, HCHO, CH3CHO, HNO2, CH3COCH3, CH4, C2H4, C2H6, C3H8, C4H10, C5H12, iso-C4H10</td>
</tr>
</tbody>
</table>

Table 1 Chemical species analysed by FTIR

Fig.2 Comparison of measured concentration between FTIR and conventional gas analyzers

3. ガス燃料の排出傾向
3.1 機関性能 まず圧縮比 ε を 11.5、冷却水出口温度 Tw を 50℃として、天然ガス NG、メタン CH4、液化石油ガス LPG、プロパン C3H8 および NG+H2 の機関性能を比較して図 3 に示す。なお、各燃料とも燃焼変動 δ が 5% を越えたところで試験を打ち切った。
め、NG+H2を除いて当量比φ=0.6付近までが運転範囲となった。ただし、CH4はφが0.6に近づくと他の燃料よりも急激にδが増加し、希薄限界当量比がやや高いといえる。またNG+H2では燃焼速度の速いH2の作用により、φが0.6以下で他の燃料よりδが小さい。

正味平均有効圧力pと正味熱効率ηは、NG、CH4およびNG+H2燃料がほぼ同等で、C3H8、LPGの順に高くなる。これは、MBTで差が見られることから、燃料による燃焼速度の違いがサイクル効率に影響した結果と推定されるが、熱効率の差を定量的に説明するためには、なお詳細な検討が必要である。

3-2排気ガス分析結果 図4はNGおよびLPGの排気から検出した全成分の表示である。ただし縦軸は成分モル分率の対数であり、排気中のH2Oを含めたウェットベースの濃度を当量比φに対して表示した。このように多くの成分を同じサンプルから同時に測定できるため、排ガス中成分の構成比を算出することが可能になる。この結果をもとに、以下に代表的な成分の排出傾向を個別に検討する。

図5は各種ガス燃料の酸素酸化物NOおよびNOxの当量比φに対する排出濃度の変化を示す。NO濃度は各成分ともφ=1よりもわずかに希薄側で極大を示し、希薄側へ向かって急激に減少する。LPGおよびC3H8は他の燃料に比べて当量比全域にNO濃度が高い。NO濃度の極大値は燃料の断熱火炎温度の順序に従っているが、過満あるいは希薄な条件ではその関係が崩れる。NOxはφ=0.8付近で極大値を持ち、LPGとC3H8
の低当量比でやや濃度が高し。NO2 の排出濃度は高当量比では NO に比べて無視できるが、その燃料でも NO 濃度が 100 ppm を下回る混合気濃度では NO と同程度の濃度になる。希薄域では燃焼温度も低く、このような条件で NO2 が増加することは、混合気の平衡組成を計算した結果と定性的に一致する。ただし、NO2 は主として NO から生成されると考えられる（3）ので、十分な希薄化により NO 生成を抑制すれば低減できるものと考えられる。なお、N2O の排出量はどの燃料でもわずかで、測定限度（5 ppm）以下であった。

図 6 は未燃成分の排出濃度を整理したもので、THC および CO。未燃化しながら毒性が指摘されているアルデヒド（ホルムアルデヒド HCHO + アセトアルデヒド CH3CHO）の当量比に対する変化を示す。THC は C1-C4 の炭化水素の排出濃度をメタン換算して合計したものを表示した。図より、いずれの燃料成分も当量比が下がるに従って増加することが分かる。CO およびアルデヒド類は、C3H8 および LPG で全体に排出濃度が高高い。逆に NG + H2 で最も低い。検出されたアルデヒド濃度は、量論比 ϕ=1 に近い所では、M85 のようなメタノールを含む燃料の排出（4）に比べて低い値であるが、混合気が希薄になるにしたがって急激に増加する。THC は NG, CH4 に比べて C3H8 および LPG で ϕ<0.8 において排出量が少ない。アルデヒドの内訳としては、CH4, NG 燃料では HCHO が 93～97%, C3H8, LPG では 80～90%を占めており、燃料炭化水素の炭素数が増えるにつれてその割合が低下する。また、ϕ が下がるとその割合が徐々に減少するものの、希薄化によるアルデヒドの増加原因は HCHO にあるといえよう。

図 7 は当量比 ϕ が 0.7 の希薄域における排出未燃炭化水素の成分構成比を各燃料で比較した結果である。CH4 を燃料とした場合には、排出炭化水素の 96% が未燃の CH4 である。また NG においては 85%が未燃の CH4 で、アルデヒドを除く炭化水素中における割合は NG 燃料中の C4H8 含有率にほぼ等しい。NG に H2 を混合しても、排気中炭化水素の構成に大きな影響はない。一方、C3H8 あるいは LPG では、C3H8 あるいは n-C3H8, i-C3H8 などの未燃燃料の構成比率は 60%程度で、残りの燃料の熱分解によって生じた C3H8 も CH4 といった不飽和炭化水素である。

3-3 冷却水温の影響と動粘性の排出特性について

実験機関で問題になる冷製時ににおける排出物質の傾向を天然ガス NG について調べた。図 8 は機関冷却水温度を T = 30, 50, 90℃の 3 通りに変化させた時の定常
希薄燃焼火花点火機関における排气特性への燃料影響

水温の低下により当量比 ϕ が 0.7〜1.0 の範囲で NO が減少するが、NO2 については、$\phi=0.8$ においてのみ減少が見られる。アルデヒドに対する水温の影響は大きくないが、THC は、$T_w=30^\circ C$ とした場合、希薄限界に近づくと急激に増加する。

図 10 は機関を室温状態で放置しておき、機関回転速度を 1200rpm として機関を駆動運転した後、燃料供給および点火を始めた時の各排气成分の時間変化を記録した結果である。図の上段にはこの時のトルク T、冷却水温度 T_w および排气温度 T_e の経過を併せて示す。燃料は NG とし、WOT のもとで当量比 ϕ を 0.97 と 0.68、点火時期をそれぞれの当量比において $T_w=50^\circ C$ の定電気試験で設定した MBT 点火時期とした。NO は冷却水温度 T_w の上昇に伴って徐々に増加し、$\phi=0.68$ では一定値となるまでに 5 分以上を要する。一方、未燃 CH4 は始動直後に多く、時間経過とともに減少する。$\phi=0.68$ の希薄燃焼時には始動直後に定常運転時の 3 倍以上の 10000ppm を越える高濃度の CH4 が排出された。

FTIR 分析のサンプルガス導入管が比較的長く、分析セル容積が 600cc とかなり大きいことから、拡散による検出濃度の低下があることを考慮すれば、実際にはさらに高濃度の未燃化水素が排出されていたと推定される。天然ガスなどのガス燃料では、吸気管内噴射方式のガソリン機関にみられるよう、吸気ポートへの付着燃料を考慮した始動時の大幅な燃料增量の必要がないと考えられるが、始動直後では、上に示したように低い水温の影響を受けて高濃度の未燃分が排出されるため、始動点火時期および当量比の適正化と、触媒活性の確保が必要と思われる。

4. ガソリン燃料の排出傾向との比較
次に、同一試験機関を用いてガソリンを使用した時の排出傾向を前述のガス燃料の結果と比較した。ここでは、吸気管にインジェクターを取り付け、ノッシング防止のため、圧縮比をガス燃料試験時の $\varepsilon=11.5$ から 8.5 に減少させたほかは機関条件を変えていない。ただしガス燃料のような理想的な予混合気ではなく、噴射時期が排气特性に影響することが予想されたため、この点についても同時に検討を行った。

4.1 機関性能 図 11 に水温 $T_w=50^\circ C$ のもとで三種類の噴射時期における機関性能を比較して示した。ESO は吸気弁弁閉弁開始時期（SO）に噴射を終了させることで、MSO は喷射期間の中央を SO に合わせ、噴射の前半を吸気弁弁開弁時に、後半を閉弁時に行う設定、さらに MMS は喷射期間の中央を吸気期間の中央に合

--- 392 ---
4-2 排気特性

NO および NO₂ を図 12 に、THC、アルデヒドなどの測定結果を図 13 に示す。いずれの成も当量比に対する傾向はガス燃料と類似している。NO は ESO 噴射のピーク値がやや高いが、MSO、MMS では図 5 に示した NG および CH₄ と同程度の排出量である。NO₂ はどの噴射時期でも NG および CH₄ とはほぼ同程度で、C₃H₆ および LPG よりも排出量が少ない。THC は ESO でやや高く、いずれの噴射時期についても希薄燃焼時の δ の増大に対応して急激に増加する。THC の排出量はガス燃料に比べると低いか、図 2 において触れたように、FID 方式 THC 計で計測すると、ここに示す値の 2 倍近い濃度になる。アルデヒド類は MMS 噴射の希薄側でやや少なくなるほかは、全体としてガス燃料ほど同封の排出量である。アルデヒド中の HCHO の割合はガス燃料と違って当量比により大きに変化し、φ =1 で約 65%，φ =0.68 すると約 20%に減少する。すなわち、希薄化に伴なうアルデヒドの増加は主としてアセトアルデヒド CHOCHO によるものといえる。毒性物質ベンゼン C₆H₆ およびトルエン C₇H₈ は THC と同様の傾向である。なお、1,3-ブタジエン (1,3-C₄H₆) は過濃域を除いて 10ppm 以下の排出量であった。

以上の結果より、ガス燃料およびガソリン（噴射時期 MMS）の排出未燃化水素 THC と NOx (=NO+NO₂) の関係をまとめて図 14 に示す。なおガソリンの THC は、FTIR 分析計による測定値だけでは
希薄燃焼火花点火機関における排気特性への燃料影響

Fig.14 NOx-THC trade-off relation of various fuels

無視される成分が多いので、FID分析計による濃度を用い、ドライベースで表示した。

図によると、希薄化によってNOxを減少させると、一様にTHCが増加する関係が見られる。たとえば、NG、LPG、C₅H₁₀においてNOxを200ppmまで下げようすると、THCは約3000ppmの高濃度になる。

NGにH₂を混合すると、THCが抑制される。逆にCH₄についてはNOxを200ppmレベルまで下げると、図3および図6に示したように燃焼変動がはなはだしく、THCの排出量はさらに高濃度になる。

ガソリンは燃料供給法の速さから、混合気の不均質性が他より強いと思われるが、低い圧縮比の低いクエンジンの影響でNOxが比較的低く、同じNOxに対するTHC濃度は希薄限界当量比が低いNG+H₂と同程度で、他の燃料に比べて低い。ただし、本実験の条件では、ガソリンでNOxを200ppm以下に下げると失火を起こすため運転ができない。

文 献

(2) 中園、第10回内燃機関シンポジウム講演論文集、(1992),p.481-486.

5. おわりに

天然ガスやLPGをはじめとするガス燃料およびガソリンによって、火花点火機関の希薄燃焼時におけるNOxおよび未燃排気物をその構成成分に分離して測定し、燃料種の影響を評価した。その結果次のような知見を得た。

(1) NOは混合気を希薄化するために急激に減少するが、LPGおよびC₅H₁₀はNGおよびCH₄に比べて排出量が多い。NOxはNO排出量の極大を希薄側の当量比0.8付近に極大値を持ち、希薄限界近くでNOxの増加を示す。

(2)ガソリンの未燃炭化水素は混合気を希薄にするほど増加し、その構成成分はNGおよびCH₄では、ほ