Measurement of the Thermal Resistance of Scale Adhered to Inner Surface of Boiler Tubes

Osamu MAKISHI*3, Tetsu FUJII, Atsushi KAWABE and Tadashi TAMAGAWA

*3 University of East Asia, Dept. of Mechanical Engineering, Ichinomiya-ku, Fukuoka City, 812-8503 Japan

This paper proposes a method of measurement of the thermal resistance of scale adhered to the inner surface of a boiler tube. The principle of the method is to measure the temperature rise due to the scale when the tube is radiatively heated from outside. An experiment was performed with a test piece composed of three tubes of 30 cm in length, which had been cut away from a supercritical pressure boiler. 120 mm × 140 mm area of the test pieces was radiatively heated, boiling of water took place inside the tubes, and the temperature at the top of the tubes was measured with welded thermocouples of 80 μm in diameter. Similar measurement was performed after cleaning the inside of the tubes with hydrochloric acid, and both measured data were compared. An example of the results is as follows; the difference of the temperature rise was 8.24 K for heat flux of 100 kW/m², and the estimated thermal resistance of the scale was 0.082 m² K/100 kW.

Key Words: Boiler Tube, Scale Deposits, Thermal Resistance, Measurement, Radiation Heating

1. 緒 言

火力発電所のポイラ発管の内部には、鉄酸化物を主体とする多孔質スケールが堆積する。このスケールの熱伝導率は管材に比べて非常に小さいため、管外表面温度の上昇をもたらし、管の破壊事故を引き起こす原因となる。それを予防するため、火力発電所では定期的に化学洗浄によるスケール除去を行っている。従来、定期点検時に、経験的にスケール厚さの多いと思われる高熱負荷箇所から発管の一部を切り出し、その温度測定を行った。その際、発管の切り出しおよびその補修は非常に煩わしい作業である。さらに、化学洗浄にも多額な費用を要するだけでなく、大量の洗浄廃液を適切に処理する必要があるため、実施頻度を最小限にとめることが望まれている。また、近年、運転モードの変更に伴う高熱負荷位置の移動や給水処理法の変更に伴うスケール付着量の変化が予想されており、経験的知識だけではスケール付着量の判断が困難になった。

そこで、非破壊的、的確かつ簡便なスケールの熱抵抗測定技術を確立する要求が高まってきた。ポイラ鋼管の厚さ約5 mmに対して、スケールの厚さは約100μmであるので、従来提案されている超音波、放射線、磁気および振動などを用いたスケール厚さ測定法は成功していない。また将来それらが成功したとしても、個々の場合について、スケールの熱伝導率を別途測定しなければならない。それらに対して、熱的抵抗はスケールの熱抵抗を直接測定するものであるから、スケール厚さを測定する必要がない。さらにスケールの熱伝導率を不問に付すことができる。

熱的抵抗のひとつとして、管外表面を実機同一の高熱流束でスポット加熱し、その部の温度上昇値を放射温度計で測定し、その値とスケール付着量との関係を求めめる研究が行われたが文献(1)～(5)、実用化に必要な測定精度を得る方法が見出されていない文献(6)～(10)。文献(7)の熱抵抗測定方法において、実施例として上記のスポット加熱法が挙げられている。しかし、この場合には熱が管管内を3次元的に拡散するため、スケールの部分における熱流束を評価することができないので、スポット加熱点の温度情報からスケールの熱抵抗を算出することは不可能である。

本研究では、実機から切り出したポイラ発管を面状の輻射加熱器を使用して加熱し、スケールが付
ボイラ蒸発管の内面スケールの熱抵抗測定法

着いている場合とそれを除去した場合の管外表面温度を測定し、スケールの見掛けの熱抵抗を算出する。さらにスケールの付着量と熱抵抗との関係について、従来の知見と比較する。そして、本法の実機への適用について考察する。

記号

\(H \)：テストピース下端からの距離、mm

\(K \)：見掛けの熱通過係数、kW/(m\(^2\)-K)

\(q_s \)：加熱熱流束、kW/m\(^2\)

\(R_s \)：スケールの熱抵抗、m\(^2\)K/kW

\(T_{sat} \)：管内水の飽和温度、\(^\circ\)C

\(T_e \)：管外表面温度、\(^\circ\)C

\(\Delta T \)：\(T_{sat} - T_e \), K

\(\alpha \)：管内沸騰伝熱係数、kW/(m\(^2\)-K)

\(\delta \)：スケール厚さ、m

\(\lambda_m \)：管の熱伝導率、kW/(m-K)

添字

15：図3(a)の番号の位置

F：火炎側

R：火材側

clean：スケールなし

m：平均値

s：スケール付き

2. 測定原理

本測定法は、蒸発管壁の適当な広さの部分を外面から輻射加熱し、管外表面温度の測定値から管内面に付着しているスケールの熱抵抗を算出しようとするものである。図1はスケールが付着している場合と付着していない場合の半径方向の温度分布を概念的に示す。スケールが付着するとその熱抵抗に伴って、付着していない場合よりも管外表面温度が上昇する。管内の伝熱条件を同じとすれば、両者の管外表面温度の差からスケールの熱抵抗を算出することができる。

このとき、熱抵抗の検出には実機と同程度の熱流束（約500kW/m\(^2\))を加える必要はなく、実機の1/10程度で十分である。しかし、その熱流束に対して、温度の安定性を保つためには、管内に水を満たし、沸騰あるいはそれと同程度に高い熱伝達係数を持つ方式によって除熱しなければならない。なお、予備的な熱伝導と輻射伝熱の計算によって、加熱部の面積として、相対的に3本の管長約140mmの範囲をとり、均一加熱すれば、その中心部分の温度分布が加熱端部の影響を受けないことを明らかにした。

3. 実験装置および方法

図2に実験装置の概略を示す。実験装置は、テストピースの上部と下部にステンレスパイプを介して半透明のビニールホースを接続し、下部のビニールホースはヘッドを介してアクリル製の水タンクとU字型に接続されている模擬ボイラ蒸発管とヒーターおよびヒーター冷却水の流路部からなる。

テストピースとして、超臨界圧ボイラより切り出した長さ300mmの蒸発管を使用した。その材質はSTBA22（18Cr-9Mo）、内径はそれぞれ19.6mm、31.8mmであり、図3(a)に示すように3本が管ビッ
ポイラー蒸発管の内面スケールの熱抵抗測定法

4. 実験結果および考察

図4(a), (b), (c)は、それぞれ、スケールが付着している場合の火炎側、スケール側およびスケールを除去した場合の火炎側の代表的な3条件について、テ
ボイラ蒸発管の内面スケールの熱抵抗測定法

式は次のようである。

\[
\frac{1}{K_i} = \frac{r_e}{\lambda_m} \ln \frac{r_i}{r_e} + r_e + \frac{r_e}{\alpha} \tag{5}
\]

ここで，\(K_i\) はスケール付き管の見掛けの熱伝達率，\(r_e\) は管外半径，\(r_i\) は管内半径，\(\lambda_m\) は管の熱伝導率，\(R_i\) はスケールの熱抵抗，\(\alpha\) は管内表面の熱伝達係数である。なお，スケールの除去した場合も熱伝達率

図 5 (a)，(b)，(c) は，図 4 の条件における管外表面温度の鉛直分布を示す。温度分布はヒーター上部の 2 件および下部の 2 件の測定値を加える，高さ方向にわずかに傾斜してあるが，平均値から最大 \(\pm 2\) K 程度のばらつきを許す。なお，一定である，観測をすると，高さ方向の温度分布形が異なる加熱熱流束 \(q_i\) を変えて同様である。このことから測定値のばらつきが熱流束の温熱の高さおよび加熱面の傾斜の差異およびリード線が管の表面から浮いている程度（これは熱流束を管軸方向に引き出せば改良できる）によると考えられる。もし後者の影響が大きいとすれば，たとえば中心部の 3 件の測定値のうちの最低のものを使えばあると計算される。この報では代表温度として中央の温度 \(T_{mn}\) を採用した。

図 6 は管内に水の鉄和温度 \(T_{mn}\) に対する管外表面温度の変動 \(\Delta T = T_{mn} - T_{wm}\) および加熱熱流束 \(q_i\) の関係を示す。図中の実線は火炎側，＋印は炉材側，○印は洗浄後の火炎側についての測定値である。これらのデータを直線で近似すると，\(60 \leq q_i \leq 125\) kW/m² の範囲で，次式が得られる。

火炎側（X印）： \(\Delta T = 0.20 + 0.26 q_i\) \hspace{1cm} (1)

炉材側（＋印）： \(\Delta T = 0.20 + 0.24 q_i\) \hspace{1cm} (2)

洗浄後（○印）： \(\Delta T = 0.20 + 0.185 q_i\) \hspace{1cm} (3)

これらの式は共通に \(q_i = 0, \Delta T = 20\) K を通じ，\(q_i = 100\) kW/m² のデータを重直させて求められている。

以下，式 (1) ～ (3) よりスケールの熱抵抗を推定するが，簡単のために，軸対称 1 次元熱流を仮定する。そうすると，熱流束と温度との関係は次式で与えられる。

\(q_i = K_s \Delta T\) \hspace{1cm} (4)

Fig.4 Change of outer tube surface temperature of the test piece
係数が不変と仮定し、その場合の見掛けの熱通過係数を K_{ex} とすれば、R_s は次式で求められる。

$$R_s = \frac{1}{K_s} = \frac{1}{K_{\text{ex}}} = \frac{\Delta T_s}{q_s}$$

ここに K_s と K_{ex} は等しい q_s に対して算出することになる。式 (1) ～(3) を用いて、式 (6) の値を求めると、次のようなになる。

壁面側；$R_{w} = 0.26 - 0.185 = 0.075 \text{m}^2 \text{K}/\text{kW}$ (7a)

管内側；$R_\alpha = 0.24 - 0.185 = 0.055 \text{m}^2 \text{K}/\text{kW}$ (7b)

式(5) に $r_i = 15.9 \text{mm}$, $r_o = 9.8 \text{mm}$, $\lambda_w = 42 \times 10^{-3}$ \text{kW/(m·K)} を代入して、変形すると、次式が得られる。

$$\frac{1}{K_s} - R_s = 0.183 + \frac{1.62}{\alpha}$$

一方、式 (1) と式 (7a) あるいは式 (2) と式 (7b) から次式が得られる。

$$\frac{1}{K_s} - R_s = \frac{20}{q_s} + 0.185$$

式 (9) の右辺は洗浄後の管の特性の式 (3) からも得られる。そして、その第 2 項の 0.185 は式 (8) の管内厚部の伝導熱抵抗の項 0.183 と極めて近い値になっている。式 (8) と式 (9) を等値すると、近似的に次式が得られる。

$$\alpha = 0.08q_s$$

鉛直面における水のプール核沸騰の実験式は次の式で与えられている(9)。

$$\alpha = 0.365q_s^{0.15}$$

式 (10) と式 (11) は特性は異なるが、$q_s = 100 \text{kW/m}^2$ ではほとんど等しい値を与える。

R_s と R_α を求めめる際に用いた式 (1) ～(3) における定数を (0.85 ～ 1.15)×20 の範囲に変化させても、

$q_s = 100 \text{kW/m}^2$ の近傍のデータを重視すれば、式 (7) の値は影響されない。しかし $q_s = 80 \text{kW/m}^2$ の近傍のデータを用いれば、$R_{w} = 0.088 \text{m}^2 \text{K}/\text{kW}$, $R_\alpha = 0.069 \text{m}^2 \text{K}/\text{kW}$ となり、また $q_s = 120 \text{kW/m}^2$ の近傍のデータを用いれば、$R_{w} = 0.058 \text{m}^2 \text{K}/\text{kW}$, $R_\alpha = 0.050 \text{m}^2 \text{K}/\text{kW}$ となる。これらの値は式 (7) の値に比べて最大 25% の不確かさがある。しかし、熱流束が大きくならない範囲には見掛けの R の値が小さくなる。これは、図 6 において式 (1) ～(3) を示した線と対応するデータを比較して推定すれば、スケールを除去した管の内表面の核沸騰に対する特性が変化したことによる可能性がある。

石川ら(9)は数種類の超臨界圧ポイラに関して、管壁内温度分布を数値計算によって求め、その結果から
次式を導いた。

$$\frac{1}{K_e} = \frac{0.95 r_e}{r_0} \ln \frac{r_0}{r_n} + 1.25 \left(\frac{R_{\text{max}} - 1}{\alpha} \right) - 0.38 \frac{\lambda_m}{r_e} R_{\text{max}}^2$$

(12)

ここに R_{max} は最大スケール厚さのところの熱抵抗である。式(5)の代わりに、式(12)を用いて、実験結果から熱抵抗を計算すると、次の値が得られる。火炎側；$R_{\text{ef}} = 0.06$ m²K/W, 焼材側；$R_{\text{ef}} = 0.044$ m²K/W. これらは式(7a)，(7b)の値より約 25%小さい。

ここで、スケール付着量と熱抵抗との関係について考察しておく。本実験に用いたテストビースに添着していた管の一部について測定されたスケール付着量およびスケール厚さを表 1 に示す。スケール厚さ分布についての文献(9)の式(4)からスケール厚さの火炎側半分と焼材側半分の比を求めると、1.58:1 となる。表 1 より得られる 19.3/12.5 = 1.54 は付着量分布について、他のボイラ蒸発管と同程度であることを示す。スケールの厚さと付着量の関係を示す文献(9)の式(22)に、火炎側付着量 19.3 mg/cm² を代入するとき管頂部のスケール厚さ d_{max} は 66 μm となる。同文献の図 9 によれば、スケールの熱伝導率は 150°C で $\lambda = 3 \times 10^{-7}$ m²K/W の値であり、これを用いてスケールの熱抵抗 R_e を算出すると、$R_e = \delta / \lambda = 0.016$ ～ 0.027 m²K/W となる。この値は式(7a)の値に対して非常に小さい。また本実験で得られた火炎側の熱抵抗と焼材側のそれとの比 1.36:1 に対して、表 1 より得られるスケール厚さの比は最大値および平均値で約 1.6:1 である。これらの数値の差異を次のように解釈すると、スケールの熱伝導率は乾燥状態の値と実際の渦動状態における見掛けの値とは異なる可能性がある。またスケール付着厚さは均一ではなく、測定箇所によるばらつきが大きい。したがって、スケール厚さの測定値と熱伝導率から算出した熱抵抗よりも、直接測定された値の方が信頼性が高くかつ实用的であろう。

5. 結 言

ボイラ蒸発管をその外表面から 120mm×140mm の面積の急熱源用い加熱し、蒸発管の外表面温度をその中央部に接続した熱電対で測定することによって、管内面のスケールの熱抵抗の算出が可能であることを示した。測定に要する時間は最大 15 分程度であった。予備テストとして、同形状、同材質の清流な管で加熱熱流束と温度上昇の特性をとっておけば、本報の方法がそのまま実機に応用できる。しか

Table 1 Measured amount and thickness of deposited scale

<table>
<thead>
<tr>
<th></th>
<th>fire side</th>
<th>rear side</th>
<th>peripheral mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>amount [mg/cm²]</td>
<td>19.3</td>
<td>12.5</td>
<td>15.9</td>
</tr>
<tr>
<td>thickness [μm]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fire side maximum</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fire side minimum</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fire side mean</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rear side maximum</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rear side minimum</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rear side mean</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

し、実機の運転時の大きな熱流束に対して、スケールによる外表面温度の上昇値を正確に予測するには、熱抵抗の測定の正確度をさらに高める必要がある。

今後の研究の問題点として、(1) 本実験では熱流束を一定としてヒーターの正味発熱量を用いたが、正確にはヒーターの赤外線ランプの外表面から空気への自由対流熱損失を差し引くこと、(2) 簡単のために次元熱伝導の熱抵抗を算出したが、管内熱伝の管壁方向の温度分布を正確に把握すること、(3) 局所的に加熱された鉄管内湯沸伝熱特性を明らかにすること、などが挙げられる。

最後に、本実験に使用したテストビースの切り出しや付着スケールの定量などに協力いただいた栗原エンジニアリング（株）の関係各位に感謝する。また、予備テストのための新しいテストビースは三菱重工業（株）の松尾第二氏に製作していただいた。

文 献

(1) 高橋・山田, 電力中央研究所報告, 研究報告 W98029 (1990-3).
(2) 高橋・ほか 2 名, 電力中央研究所報告, 研究報告 W90015 (1991-3).
(4) 森永・ほか 2 名, 電力中央研究所, 依頼報告 W94508 (1995).
(5) 森永・高橋, 電力中央研究所, 依頼報告 W96508 (1997).
(6) 森永・ほか 4 名, 電力中央研究所・機械工業・機械研究開発センター 共同研究成果報告書, W989305 (1994).
(7) 高橋・ほか 2 名, 熱抵抗測定方法, 公開特許公報 (A) 2-126415.
(8) 石橋・西川, 機論, 33-245, (1967), 121-129.
(9) 石川・ほか 3 名, 機論, 50-450, B (1984), 460-468.