移動格子有限体積法*
（第2報, 非定常流に対する解適合ダイナミック格子法の構築）

佐藤 泰啓*1, 松野 謙一*2
中川 義策*3, 里深 信行*4

An Iterative Finite-Volume Method on a Moving Grid

Yasuhiro SATO, Kenichi MATSUNO*4,
Yusaku NAKAGAWA and Nobuyuki SATOFUKA

*4 Kyoto Institute of Technology, Dept. Mechanical and System Engineering,
Matsugasaki, Sakyoku, Kyoto, 606-8585 Japan

A solution-adaptively moving-grid method for unsteady shock flows is presented in this paper. An elliptic system for solution-adaptive gridding and a finite-volume method formulated on space-time control volume for compressible flow solution are combined through an inner iteration process and solved simultaneously at every time step. The method is derived for two-dimensional space and validated using simple test problems. Application to a cylindrical implosion problem showed a promising feature of the method.

Key Words: Computational Fluid Dynamics, Grid Generation, Finite Volume Method, Unsteady Flow, Compressible Flow

1. 序論
計算流体力学は、定常流に対しては主に実用の域に達し、現在は複雑形状物体まわりの非定常流や移動境界を含む流れの流体-物質運動を考慮する流れ問題の興味が高まっている。研究が盛んに進められている。

我々は、文献(1)において圧縮流体と物質の運動が相互に干渉するような非定常移動問題を取り上げ、物質の運動に対応して格子を流動させまたは変形させるスキームの開発を行った。著者らは移動格子に対して空間一時間の両空間にまたがるコントロールボリュームを考え、幾何保存則 (Geometric Conservation Law)(2)を満足するように有限体積法の定式化を行い、内部反復過程に有理ルンゲ-クロッタ法を組み合わせた移動格子有限体積法を提案した。そして、一次元流を対象として基本的な検証を行い、スキームの有効性を示した。

一方、我々は非定常流の数値解を高効率かつ高精度で実現することに着目した。その方法のひとつに、物理量の変化に合わせて格子密度を自動的に制御する解適合格子法(3)がある。最近では、デカルト格子上で格子を分割あるいは結合して流れの変化するところを格子を集中させる格子細分化法(4)に基づく解適合格子法が多い。しかし、この細分化法はデータ構造が非格子特異のものになるため、さらに細分化した格子の保存量の分配などを考慮しなければならない問題も多い。我々は、別のアプローチとして格子の位置を変化させる方法を取り上げ、文献(5)において、定常流を対象に準円型方程式を用いた解適合格子法を提案し、その有効性を示した。ただし、物理量が時間とともに変化する非定常流の場合、この方法を適用するためには流れ場の時間変化に合わせて時々刻々と格子を移動させることが必要である。

そこで本論文の目的は、非定常流を対象に準円型解適合格子法(6)と移動格子有限体積法(7)を有機的に組み合わせ、動的な解適合有限体積法 (解適合ダイナミック格子法) を構築することである。本論文では、一次元流に対して定式化と検証を行った移動格子有限体積法(7)を二次元へ拡張し、物理量の変化に適応するように

* 原稿受付 2000年2月21日。
** 京都芸術総合大学工学部(●606-8585 京都市左京区松ヶ崎御影西門前)。
*** 正員、京都工芸繊維大学芸術学部。
**** 東レ(株) (●520-0842 愛知県名古屋市千種区).
E-mail: matsuno@ipc.kit.ac.jp

NII-Electronic Library Service
非定常二次元オイラー方程式

二次元非粘性圧縮性流に対する無次元化されたオイラー方程式は、保存則表示で以下のように表される。

\[
\frac{\partial q}{\partial t} + \frac{\partial E}{\partial x} + \frac{\partial F}{\partial y} = 0
\]

(1)

\[
q = \begin{bmatrix}
\rho \\
\rho u \\
\rho v \\
e
\end{bmatrix},
E = \begin{bmatrix}
\rho u \\
\rho u^2 + p \\
\rho uv \\
u(e + p)
\end{bmatrix},
F = \begin{bmatrix}
\rho v \\
\rho uv \\
\rho v^2 + p \\
v(e + p)
\end{bmatrix}
\]

(2)

ここで、\(\rho \) は密度、\(p \) は圧力、\(u, v \) は \(x, y \) 方向の速度成分である。また、\(e \) は単位体積当たりの全エネルギーであり、比熱が \(\gamma \) である理想気体を仮定すると、状態方程式を用いて次のように表すことができる。

\[
e = \frac{p}{\gamma} + \frac{1}{2} \rho (u^2 + v^2)
\]

(3)

3. 解適合ダイナミック格子法

本章では、文献(1)(5)で用いたスキームを基盤とし、二次元非定常流に対して拡張する。そして、両スキームを完全に同期させるアルゴリズムについて示し、非定常流に対する解適合ダイナミック格子法の構築を行う。

3.1 基本的概念

一般に、流れ現象を数値解析する場合、高精度かつ高効率で計算する必要がある。特に非定常問題を対象とする場合、さらには動的な解析が必要となる。本論文で提案する解適合ダイナミック格子法は、移動格子体積法と協和型解適合格子法の両方の特徴をもつていしたスキームであり、時々刻々と格子が移動して解適合格子を形成し、格子の移動をもつないでも保存則を壊すことなく、流れ現象を正確かつ動的に捉えることができるものである。ここで重要なのは、時間ステップごとに、ある規範のもとで流れ場と格子の位置が同時に更新されるということである。

3.2 流れソルバー

非定常流に対して格子を移動または変形させる場合、正確な解を出すためには、空間の保存則を考えるのと同じように時間空間においても物理量の保存を考え、幾何保存則を満たす必要があることに先述した。そのためには離散化の段階でこの幾何保存則を考慮しなければならず、ここでは文献(1)による定式化を二次元を対象として示す。

3.2.1 各数値解則を満たす離散化

いま、式(1)を発散形表し、次のように表すことができる。

\[\nabla \cdot \vec{F} = 0
\]

(4)

ここで、\(\nabla \) および \(\vec{F} \) は、\(\vec{e}_x, \vec{e}_y, \vec{e}_t \) を \(x, y, t \) 方向の単位ベクトルとしたとき、

\[\nabla = \vec{e}_x \frac{\partial}{\partial x} + \vec{e}_y \frac{\partial}{\partial y} + \vec{e}_t \frac{\partial}{\partial t}
\]

(5)

\[\vec{F} = F \vec{e}_x + F \vec{e}_y + q \vec{e}_t
\]

(6)

である。次に、時間一空間の両空間にまたがるコントロールボリュームで有限体積法 (Finite-Volume Method) を適用する。図1に示すように、\(n \) および \(n+1 \)

Fig. 1 Control volume in space-time system

時間ステップに挟まれ、格子網の中心 \((i\pm1/2, j\pm1/2)\) を頂点とする六面体をコントロールボリュームとする。式(4)をこのコントロールボリュームに対して体積積分し、さらにガウスの積分定理を用いると以下のように表すことができる。

\[\int_V \nabla \cdot \vec{F} \, dV = \int_S \vec{F} \cdot \vec{n} \, dS
\]

(7)

ここで、\(\vec{n}_\ell = (n_x, n_y, n_z) \) である。\(\ell = 1, 2, \cdots, 6 \) は六面体の \(\ell \) 番目の面に対する外向きの法線ベクトルであり、その長さはその面の面積を表す。ここでは表面の対角ベクトル \(\vec{A}_\ell, \vec{B}_\ell \) を考え、式(7)のように評価する。

\[\vec{n}_\ell = \frac{1}{2} \vec{A}_\ell \times \vec{B}_\ell
\]

(8)

また、\(i^n \) 面と \(i^{n+1} \) 面は時間軸に対して垂直であるから \((n_x) = (n_y) = (n_z) = 0 \) である。よって、式(7)は具体的に次のように離散化される。

\[q_{i,j,k}^{n+1}(n_z) + q_{i,j,k}^{n+1}(n_z) + \sum_{\ell=1}^{6} [(E^{n+1/2}, F^{n+1/2}, G^{n+1/2}) \cdot \vec{n}_\ell] = 0
\]

(9)

3.2.2 流出ベクトルの評価

流出ベクトルの評価は、近似リーマン解法のひとつである Roe の Flux Difference Splitting 法を用い、さらに空間高次精度なる
に minmod limiter を併用した MUSCL 法（6）を適用する。なお、コンクトロールポリュームの側面 $n+1/2$ において必要となる量（例えば $E^{n+1/2}_i$ 等）の評価は、$n+1$ と n での値の平均とし、また、$q_{i+1/2}^{n+1} = (q_{i+1}^{n+1} + q_i^{n+1}) / 2$ の評価に必要となる $q_{i+1/2}^{n+1}$ 等は Roe 平均（6）を用いる。

3.2.3 擬似時間内部反復法 式（9）は除的スキームであり、何らかの線形化を行って解かなければならない。本論文では文献（1）に従い、擬似時間内部反復法を用いる。いま、オペレータを

$$
L(q^{n+1}) = \frac{1}{\Delta t(n_c)} \left[q_{i+1/2}^{n+1}(n_c) - q_{i+1/2}^{n}(n_c) \right] + \sum_{\ell=1}^{4} \left\{ (E^{n+1/2}_{i+1}, E^{n+1/2}_{i-1}, q^{n+1/2}_i) \cdot n \right\}
$$

と定義すると、反復方程式として次式を得ることができる。

$$
dq^{n+1}(\nu) = -L(q^{n+1}(\nu))
$$

ここで、ν は反復のインデックスであり、τ は擬似時間に相当する。なお、式（11）に至るまでのプロセスは文献（1）に委ねる。式（11）に有理ルンゲ・クッタ法（9）を適用し、$n+1$ 時間ステップの解を求めるために内部反復を行う。

$$
q_{n+1}(\nu_{fin}(q)) \rightarrow q_{n+1}(\nu_{fin}(q)) \quad (\nu = 1, 2, \ldots, \nu_{fin}(q))
$$

ここで、解が収束し（$\nu = \nu_{fin}(q)$）、つまり式（11）において、(左辺)=0 となるとき (右辺)=0 となり、求めるべき解 q^{n+1} を得ることができる。

3.3 解適格子形成的規則 本論文では、解適格子形成的規則として文献（5）に従い、物理量の変化の情報を含む重み関数 w^n, w^m を定め、ξ, η 方向のそれぞれの格子線に沿って重み関数と格子間隔の横が一定とされる関数を用いる。

$$
w^n s_{\xi}^2 = \text{const.}
$$

$$
w^m s_{\eta}^2 = \text{const.}
$$

ここで s_{ξ}^2, s_{η}^2 は、それぞれの格子線方向の格子間隔を表す。式（14）は、物理量の変化が大きい格子間隔とは小さいが、また物理量の変化が大きければ格子間隔は大きくするという考えに基づくものである。なお、本論文では非定常流を対象としているので、重み関数 w^n, w^m および格子間隔 s_{ξ}, s_{η} は時間の関数である。よって、時間ステップごとに式（14）が満たされるように解適格子を形成することが必要である。

3.4 反復法の同期アルゴリズム 我々がどのようにする解適格子は、ある n 時間ステップにおいてすでに配置されている格子上で流れを解き、得られた解からこれに連動するように格子を移動して形成されるものである。そこで、必要ならなければならなのは、各格子が、移動する前に揺れている物理量の情報を所有したまま移動してしまうことである。よって、新しく得られた格子上で再度流れを解く必要があり、n 時間ステップをとり、$n+1$ 時間ステップの解を得るためには、内部反復内でこれらを繰り返しながら最終的に流れ場と格子位置が同時に収束しなければならず、そこで、解適格子の形成に用いられる枠内方程式の反復解法として、流れソルバーの内部反復と関連付けた同期計算を行う。すなわち、内部反復ごとに物理量の変の情報を利用して格子の再形成のための反復も同時に進行する。ただし、流れソルバーの内部反復において、反復ごとに更新される途中の解の変化に対応して同時に格子が移動し続けるので、収束性が低下してしまう。よって、本スキームでは格子の変更の程度収束したところで格子形成の反復を終了し、後はその得られた解適格子上で、流れ場が収束するまで流れソルバーのみの内部反復を繰り返すものとする。

次に、これらの方法を具体的に定式化する。各時間ステップにおける内部反復に対応した格子形成のための枠内方程式（7）は、n を時間ステップとし、内部反復のインデックス ν を用いると次のように書ける。

$$
\alpha (r_{\xi}^{n+1}(\nu_{\xi}) + \phi r_{\xi}^{n+1}(\nu_{\xi}) - 2\beta r_{\xi}^{n+1}(\nu_{\xi})) + \gamma (r_{\eta}^{n+1}(\nu_{\eta}) + \psi r_{\eta}^{n+1}(\nu_{\eta}) = 0
$$

ただし、$\nu = (x, y)$ とする。

$$
\begin{align*}
\alpha &= r_{\xi}^{n+1}(\nu_{\xi}) - r_{\eta}^{n+1}(\nu_{\eta}) \\
\beta &= r_{\eta}^{n+1}(\nu_{\eta}) - r_{\eta}^{n+1}(\nu_{\eta}) \\
\gamma &= r_{\eta}^{n+1}(\nu_{\eta}) - r_{\eta}^{n+1}(\nu_{\eta})
\end{align*}
$$

である。ここで式（15）における ϕ, ψ は格子の位置を決める制御関数であり、式（14）に対応した重み関数と近似的に次のような関係がある。

$$
\phi = \frac{u^{n+1}(\nu)}{w^{n+1}(\nu)}, \quad \psi = \frac{w^{n+1}(\nu)}{w^{n+1}(\nu)}
$$

式（15）に、緩和方のひとつである、緩やか放物方による反復法を用いる。いま、Ω を緩和係数とし、$\delta r^{n+1}(\nu)$ を緩やか放物法による修正量とすると、以下のように $\nu = \nu_{fin}(\nu)$ まで内部反復により修正される。

$$
r^{n+1}(\nu) = r^{n+1}(\nu) + \Omega \delta r^{n+1}(\nu)
$$

$(\nu = 1, 2, \ldots, \nu_{fin}(\nu))$
4. 応用

本章では、まず格子を移動させても幾何保存則を完全に満たすかどうかの確認を行い、次に応用を示す。特に衝撃波をシャープに捉えることに重点を置き、解適合格子を形成する。

4.1 極値保存則の検証

幾何保存則は、格子が移動しても流れ場の一様状態を正しく捉えることを定義としている(2)。そこで、一辺の長さが 2.0 である正方形の計算領域を考え、式 (20) に従って格子を移動させた上で一様流の計算を行う。

\[x_{i,j} = x_{i,j} + 0.3 \Delta x \cos \theta, \quad y_{i,j} = y_{i,j} + 0.3 \Delta y \sin \theta \]
\[(i = 2, \cdots, i_{\text{max}} - 1, \quad j = 2, \cdots, j_{\text{max}} - 1) \]
\[x_{i,j} = 2 \cdot (i - 1), \quad y_{i,j} = 2 \cdot (j - 1) \]
\[\theta = \frac{\pi}{2} (x_{i,j} + y_{i,j}) \frac{3}{40} n \]

ここで、\(n \) は時間ステップで \(\Delta x, \Delta y \) は格子幅を表す。初期条件として、全格子点に一様流 \(\rho_{\infty} = 1.0, \quad \rho_{\infty} = 1.0/\gamma \) (\(\gamma = 1.4 \)), \(u_{\infty} = 1.0, \quad v_{\infty} = 1.0 \) を与え、\(t = 50.0 \) (時間刻み幅 0.05 で 1000 時間ステップ) まで計算を行う。

Fig. 2 History of L2-ERROR of density from initial condition

どの程度幾何保存則を満たしているかを確かめるため、初期値 \(\rho_{\infty} \) との誤差を次式のように定義する。

\[L2 - ERROR = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m} (\rho - \rho_{\infty})^2_{i,j}} \]

式 (21) に従って調べた誤差を図 2 に示す。図 2 より、初期値との誤差は \(10^{-14} \) 程度であった。この図は密度についての誤差を示しているが、圧力や速度などの他の物理量においても誤差は同程度であった。よって、本システムは十分に幾何保存則を満たしているといえる。

4.2 二次元円柱爆縮問題への適用

本節では応用として、衝撃波や接触面のような不連続面が存在する二次元円柱爆縮問題を取り上げる。

4.2.1 二次元円柱爆縮問題

いま、図 3 に示すように一辺の長さが 4.0 である正方形の計算領域を考え、比較比 \(\gamma = 1.4 \) である理想気体を対象とし、初期状態として、中心 (原点) からの距離が 1.0 の位置を境とし、圧力比 10.0、密度比 10.0、温度比 1.0 を与える。格子点数を 121×121 とし、\(t = 0.55 \) (時間刻み幅 0.0025 で 220 時間ステップ) まで計算を行い、解の状態について検証する。

4.2.2 収束判定基準の設定

まず、収束判定基準を設定せずに内部反復回数を 30 回と固定し、円柱爆縮問題を解いてみた。本ケースでは、内部反復 1 回につき格子形成の反復を 2 回行い、内部反復が終了するまで格子を再形成させ続けた。この場合、格子は微小ではあるが移動し続け、流れ場の残渣が \(10^{-2} \) 程度しか収束しなかった。図 4 は時間ステップにおいて最も大きく移動した格子について、内部反復回数とその格子点の移動量をグラフにしたものである。図 4 にみられるように、内部反復が 5 回程度で格子の移動量はほぼ一定 (厳密には微小量移動し続けている) となり、解適合格子を形成したと判断できる。よって、格子形成は内
4.2.3 計算結果 前述の収束判定基準のもとで、解適用ダウンソーリング格子法を用いて計算を行う。格子形成の条件として、総和係数 \(\Omega = 0.8 \) とし、重み関数には文献(5)に従い、密度の一階微分と速度の一階微分を組み合わせて用い、さらにより効果的な解適合格子を形成させるために物理量にスムージングを施した補正分布により評価する(5)。また、式(11)における鎮定時間ステップ \(\Delta t \) は \(\Delta t = \Delta t \) とおく(1)。なお、初期格子には二つの不連続面をより効果的に捉えるため、あらかじめ計算領域の中央付近で格子密度を大きくしたものを利用に。この場合、解適合格子形成の影響により、用意していただいた初期格子まで動きてしまうことのないように、初期格子の分布から逆に制御関数を求め、制御関数に初期格子の情報を取り入れる(8)。

図5に時刻 \(t = 0.4 \) における密度分布を示す。ただし、本計算による解は軸対称に、\(x \) 軸方向における \(x = 0.0 \) から \(x = 2.0 \) の断面図を示す。(A)が解適合格子による計算結果であり、(U)は(A)と同じ格子点数の等間隔格子による計算結果である。なお、計算結果を比較するために、十分な格子点数(1001点)の等間隔格子を用いて、従来の方法によって計算したものと比較して、その係数の基準と合わせて示した。また、図6に(A)(U)両ケースの密度の等高線を示す。両者を比較すると、解適合格子の効果により(A)は衝撃波および接触点の位置に格子の集中がみられ、(U)よりも2つの不連続面をシャープに捉えていることがわかる。図7は、時刻 \(t = 0.4 \) に示すまで、解適合格子が移動する様子を分かりやすく示したものので、計算領域の第一象限のみ示す。
場合、衝撃波の位置で最も格子間隔が小さくなり、(U)との格子間隔比が0.245となった。つまり、衝撃波の位置においては格子間隔が約1/4となり、約4×4倍の等間隔格子で衝撃波を捉えるのと同様の効果があるといえる。なお、計算時間について、(A)のCPU時間は(U)の1.28倍であった。等間隔格子で(A)と同精度の衝撃波を捉える場合には、約4×4倍の格子点数が必要であるから、単純に考えてCPU時間は(U)の16倍必要である。つまり、本スキームは(A)の約4×4倍の等間隔格子で捉える衝撃波に同精度のものを、約8%の計算時間で得ることができた。

Fig. 8 Temporal change of density distribution on x-axis

次に、図8に解適格子が移動しながら捉えた、x軸上の密度分布の時間的変化を示す。ここで、衝撃波が中心部で衝突し、密度が急上昇した時刻$t=0.55$に注目する。図9は計算領域の中央部における密度分布であり、(R)は一次元軸対称方程式を用いた参考解、(A)は解適格子による解、(U)は(A)と同じ格子点数の等間隔格子による解を示している。図9より、(R)において$\rho_{\text{max}}=1.79$であるのに対し、(U)は$\rho_{\text{max}}=1.07$であり、密度の上昇を59.8%しか捉えられなかった。ところが、(A)は$\rho_{\text{max}}=1.55$であり、密度の上昇を86.0%捉えられ、同じ格子点数でも解適合格子の効果により、等間隔格子よりも26.8%銳く捉えることができた。

なお、本解適合格子法は、格子形成のために磁円形方程式を用いているので、その方法が適用できることが必要である。また、本論文では、衝撃波などを格子を集中させることをねったが、渦の捕獲など、粘性流への拡張は容易である。

5. 結論

本論文では、非定常流に対して動的に解析を行うことができる解適合ダイナミック格子法を提案した。そして一様流の捕捉や収束判定基準について検証した後、衝撃波のような不連続面を持つ二次元円柱挿経問題に適用させた。その結果、以下のような結論が得られた。

1. 本解適合格子有限体積法は、二次元においても一様流を捉えることができ、幾何保存則を満足していることが確認できた。

2. 流れ場と格子形成に対する再反復の同期について、内部反復の開始格子を再生成させ続けると流れ場の収束性が低下してしまうが、解適合格子が形成されたと判断した時点で格子形成を終了させると、急速に収束に向かった。

3. 解適合格子の効果により、衝撃波の位置においては、同じ格子数の等間隔格子と比べて格子間隔が約1/4となり、約4×4倍の等間隔格子と同程度で衝撃波をシャープに捉えることができた。

4. この場合、解適合ダイナミック格子法は、同精度の解を等間隔格子で得る場合と比較して、約8%の計算時間が得ることができた。

5. 時刻$t=0.55$において、中心部における密度の上昇を同じ格子点数の等間隔格子と比べて26.8%銳く捉えることができた。

文 献

(1) 三原清秀ほか2名、機論、65-637、B(1999)、2945-2953。
(2) 松野康一、数値流体力学会誌、3-2(1995)、103-114。
(5) 山川勝史ほか2名、機論、62-599、B(1996)、2640-2645。
(6) 藤井孝載、流体力学の数値計算法、(1995)、119-153、東京大学出版会。
(7) Thomas, P.D. et al., AIAA J., 18(1980), 652-656。