LiBr・水吸収冷凍サイクルの性能特性に関する研究*
（吸収プロセス、単効用及び二重効用型サイクルのエクセルシー解析）

浅野 等**1, 藤井 照重***1, 久辺 喜雅***2, 王 嘉***3, 津田 敏毅***3

A Study of Performance Characteristics of LiBr-Water Absorption Refrigerating Cycle
(Exergy Analysis on Absorption Process, Single- and Double-Effect Cycle)

Hitoshi ASANO**4, Terushige FUJII, Yoshinori HISAZUMI, Xiao WANG and Hideki TSUDA

**Department of Mechanical Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe-shi, Hyogo, 657-8501 Japan

It is important for energy saving to use the waste heat efficiently. An absorption cycle is effective equipment for the thermal utilization. In order to improve the performance of absorption cycle for the various operating conditions, it is important to analyze the exergy loss in each component and evaluate not only the quantity but also the quality of heat flow. In this paper, the evaluation of the exergy loss in the absorption process and an exergy analysis of the single-and double-effect LiBr-water absorption refrigerating cycles whose heat source is a saturated steam at the pressure of 800 kPa were carried out, and the exergy loss in each component were obtained. As a result, it was shown that the exergy coefficients and the COP of the single-effect absorption cycle were about 17% and 80%, and those of the double-effect cycle were about 30 and 140%, respectively.

Key Words: Absorption Refrigerating Cycle, Exergy Analysis, Single-Effect, Double-Effect, Absorption Process

1. 緒 言

1997年京都で開催されたCOPにおいて、CO2削減に
対し数値目標（我国は2010年に向け、CO2の排出量を
1990年の排出量より6%削減する）が設定され、この目
標達成が急務となっている。また、原子力発電の新規建
設が困難な状況から、省エネルギーとともに工場、ごみ
焼却炉などからの排熱の有効利用が求められている一方、
電力・熱の総合的なエネルギー利用の観点から従来
のコージェネレーションシステムに加え、近年、マイク
ログスターピンによるマイクログジェネレーションシス
テムが提案されている。いずれにおいてもシステム
の効率向上のためには排熱の有効利用が課題となる。こ
れに対し、熱駆動であり冷媒にオゾン層破壊係数及び地
球温暖化係数が0である自然冷媒を利用した吸収冷凍サ
イクルが有効である。

従来、Wardono and Nelson (1) は臭化リチウム-水二重
効用吸収冷凍サイクルのサイクル計算を行い、成績係数
（以下、COPで示す）に対する溶液熱交換器の伝熱面積
及び熱源の入口温度の影響を評価し、熱源温度145℃に
おいてCOPが140〜150%で最大となる事を示した。
Schweiklerら(2)は冷凍能力400kWの単効用二元サイクル
を設計、試作し、COPは単効用型と同様（70%）である
が、単効用型より低い温度で運転可能であることを示し
た。また、吸収冷凍サイクルの性能評価については多く
の研究がなされている（例えば、Grossmanら(3)、
Wardono and Nelson (4)）。吸収冷凍サイクルの高効率化や昇温幅拡大を目的としたサイクルの特徴や COPは功能(5)により報告されている。しかし、これらは熱影響パラメータに基づく評価であり、吸収冷凍機をコージェネレーションシステムにおける熱利用機器と位置付けた場合、COP評価だけではなく熱源を含めエネルギーの質に基づいた評価・検討が必要と考えられる。また、多様な温度、熱容量をもつ熱源に対し適切な仕様の吸収冷凍サイクルを設計するには、サイクル性能に関する運転パラメータの影響の把握とともに、システムでの流出相別不可逆損失分析が必要と考えられる。これにはエネルギーの質を評価するエクセルシー解析が有効である。Tabli and Agnew(6)は
単効用型サイクルに対しエクセルシー解析を行っているが、運転パラメータなどの影響はされていない。

本研究は、構成機器の損失分析及び性能評価を目的
としてエクセルシーの流れに基づくサイクル分析を行
う。本報では、冷媒蒸気の溶液への吸収プロセス、そし
一、単サイクルを基にした二重効用型のスキューピーチューモーチゅー系吸収冷凍サイクルの設計と検討

2. 主な記号

<table>
<thead>
<tr>
<th>記号</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>溶液濃度 [wt%]</td>
</tr>
<tr>
<td>COP</td>
<td>成績係数 [%]</td>
</tr>
<tr>
<td>e</td>
<td>比熱 [-]</td>
</tr>
<tr>
<td>h</td>
<td>比熱 [-]</td>
</tr>
<tr>
<td>LEW</td>
<td>濃縮器損失 [kW]</td>
</tr>
<tr>
<td>M</td>
<td>質量流量 [kg/s]</td>
</tr>
<tr>
<td>P</td>
<td>壓力 [kPa]</td>
</tr>
<tr>
<td>Q</td>
<td>熱量 [kW]</td>
</tr>
<tr>
<td>T</td>
<td>溶液温度 [℃]</td>
</tr>
<tr>
<td>x</td>
<td>乾燥度 [-]</td>
</tr>
<tr>
<td>η</td>
<td>濃縮器効率 [%]</td>
</tr>
</tbody>
</table>

3. サイクル構成と計算条件

図1(a), (b)に示す各サイクルにおけるエネルギー保存、質量保存をもとにサイクル計算を行った。仮定を以下に示す。

a. 冷媒は凝縮器、蒸発器出口でそれぞれ飽和水、乾燥冷凝器とする。

b. 再生器、吸収器において溶液は圧力、溶液温度に基づく平衡状態にある。

c. 溶液熱交換器の最小端末温度差は5K、凝縮器、蒸発器、吸収器、再生器のそれは2〜3Kとする。

d. ポンプ仕事、排熱損失、圧力損失は無視する。

計算条件を表1に示す。冷凍能力は100kW、冷凍機として252kWの場合を取り上げ、冷凍機及び冷却水条件を表1のよう設定、再生器の温度条件を変化させパラメータとした。なお、コーディネーションシステムでの使用を想定し、熱源には乾燥冷凝器を使用した。
4. 作動流体の物性値

本サイクルは冷媒として水、冷媒吸収剤としてLiBr水溶液を使用する。水の物性値はASME蒸気表に基づき、LiBr水溶液の比エンタルピー $[\text{kJ/kg}]$ と比エンタルピー s $[\text{kJ/kg} \cdot \text{K}]$ は水溶液の濃度 C $[\text{wt}\%]$ と温度 T_s $[\text{℃}]$ の関数として与えられた。したがって、比エンタルピーはKochlerらの文献による相関式を用いた。比エンタルピー e $[\text{kJ/kg}]$ はそれらの値を用いて下式により算出した。

$$e = (h-h_o)-T_o \cdot (s-s_o) \quad (1)$$

ここで、添字 0 は外界基準状態を表し、本計算では冷却水の入口条件、すなわち温度 32 ℃、圧力 100 kPa とし、LiBr水溶液の比エンタルピー h、比エンタルピー s 及び比エンタルピー e の計算結果を溶液濃度 C を横軸に溶液温度 T_s をパラメータとして図3 (a)〜(c)に示す。h およびs はいずれも溶液温度の増大とともに増大するが、実用濃度範囲（50wt%以上）では、溶液濃度に対する傾向は異なり、h は溶液濃度の増加に伴い増大するのに対し、s は低下する。一方、比エンタルピーe は、溶液温度の影響は小さく、溶液濃度の増大に対し大きく増大する。

5. 吸収プロセスの不可逆損失解析

吸収冷凍サイクルの特徴として水溶液が水蒸気を吸収する化学プロセスを含む。吸収過程では吸収能力を高めるため、また蒸気の吸収に伴う凝縮潜熱を除去するために溶液を冷却する必要がある。つまり、吸収器では吸収と冷却の異なるプロセスが同時に行われることから、吸収器での不可逆過程に伴う損失への運動パラメータ（溶液濃度幅、溶液温度、冷却水温度）の影響を明らかにするため、吸収プロセスを溶液の冷却プロセスと蒸気吸収プロセスに分けて、エンタルピー損失を評価した。計算モデルを図4に示す。溶液内での濃度・温度分布は考慮せずに、単容器系モデルとして一様とした。溶液は$[S_A]$（水）の状態で流入し、吸収能力を高めるため38℃まで冷却される（図4中、実線で示）。その後、5℃蒸気の凝縮気に断熱のもと平衡状態にあるまで蒸気を吸収する（図4中、破線で示）。この過程を繰り返し、吸収器出口条件$[S_{A2}]$（○印）に達するように、溶液熱交換器の吸収器側端末温度差を$5K$とした場合の、各過程におけるエンタルピー損失（LW）の計算結果を吸収器での濃度幅に対し図5に示す。図中、冷却水温度一定で吸収器溶液出口温度$T_{S_{A2}}$/（溶液出口濃度C_{A2}）を38℃（58.6 wt%）、40.3℃（58.0 wt%）とした場合の二つの結果が実線及び破線でそれぞれ示されている。これより、$T_{S_{A2}}=40.3\text{℃}$の場合（図中破線）, 吸収器

$$\text{Absorption process}$$
$$\text{Cooling process}$$

Fig. 4 Calculated model of exergy loss in absorber.
6. 吸収冷凍サイクルのエクゼルギー解析

6.1 単効用型サイクル

エクゼルギーフロー 　熱源飽和水蒸気の圧力 $P_{H_{SA}} = 800$ kPa ($T_{H_{SA}} = 170.4$ ℃), 凍結温度 $T_{C_{O}} = 40$ ℃, 再生器溶液温度 $T_{R_{A}} = 92$ ℃ ($C_{R_{A}} = 62.9$ wt%) とした場合のエクゼルギーフローを図6に、熱源 (エンタルピー) とエクゼルギーのサンキダグラフを図7(a), (b) に示す。 図6中□内の数値が不可逆損失によるエクゼルギー損失（第2種損失）を表し、各フローの幅はエクゼルギーもしくはエネルギーの大きさに比例しており、灰色の部分は負の値を示す。これより、熱源で飽和水を排出されるエクゼルギー損失は22.4 kWであり、投入蒸気エクゼルギー（159.6 kW）の14.0%に相当する。投入エクゼルギーの62.2%が機器内での不可逆損失による損失（LW）であり、その中では再生器での第2種損失が76.8kWと最も大きく、投入エクゼルギーに対して48.1%、同じく吸収器では8.0kWで5.0%であった。一方、吸収冷凍機の有効エクゼルギーは冷水のエクゼルギー増大量である28.1 kWである。ここで、投入エクゼルギーに対しても得られた有効エクゼルギーの比をエクゼルギー効率ηと定義する。すなわち、
での溶液平衡濃度、温度の低下が原因。濃度带が減少することから、吸収器での損失が低下する。吸収器で生成される蒸気圧の差、蒸発器入口冷却液温度の増大による冷却効率の増大により、冷凍器でのエクセルギー損失が増大し、その結果、COP、ηともに若干低下する。一方、熱源温度が一定であることから、COP、ηは同じ傾向を示す。

吸収器溶液温度T_{SA0}の影響

凝縮温度T_{WCo} = 40°C、再生器溶液温度T_{SR0} = 105°C一定とし、T_{SA0}を34～46°Cに変化させた場合の計算結果を図9に示す。T_{SA0}の増大により吸収器での溶液温度C_{Ao}が増大し、濃度帯が低下する。しかし吸収器では伝熱損失の増大によりエクセルギー損失L_{WA}が増大する。一方、再生器の損失L_{WR}が低下しており、COP、ηは僅かに低下する傾向にあるものの大差異は認められない。

再生器溶液温度T_{SR0}の影響

T_{SR0}を80～110°Cに操作した場合の計算結果を図10に示す。再生器での熱交換温度差を3Kとした場合のエクセルギー効率をη_e、再生器での損失をL_{WR}とし、図中破線で示す、T_{SR0}の低下により吸収器での溶液温度C_{Ao}が増大するため吸収器での損失L_{WA}が低下する。しかし、再生器では熱源との温度差が大きくなり、伝熱損失が増大する。また、濃度帯が2wt%以下になると溶液循環量の増大により、COPは大きく低下する。

一方、再生器での温度差を固定した場合、再生器での伝熱損失は大きく減少し、T_{SR0}に対しほぼ一定の値をとる。また、T_{SR0}の低下により投入エクセルギーが低下するため、η_eが大幅に向上する事がわかる。本計算では、T_{SR0} = 83°Cのとき、η_e = 39%であった。

6.2 二重吸収サイクル

エクセルギーフロー

高温及び低温再生器溶液温度をそれぞれ、T_{SR0} = 155°C、T_{SL0} = 95°C、吸収器溶液温度T_{SA0} = 38°C、凝縮温度T_{WCo} = 40°Cとし、熱源を800kPa、乾き飽和水蒸気とした場合の二重吸収サイクルのエクセルギーフローを図11に、サンプルデータを図12(a)，(b)に示す。このときのエクセルギー効率は30.8%であった。機器内部での損失は投入エクセルギーの49.3%であり、吸収器及び高溫再生器での損失が大きく、それぞれ14.6、14.1%であった。熱源の排気損失は14.1%、冷却水への損失は5.8%であった。

低温再生器熱交換器Q_{W}の影響

吸収器及び再生器での温度差、露点温度により、再生器での生成蒸気圧が求められる。ここでは、溶液をシリースフローとしていることから溶液熱交換器と低温再生器の熱交換器の関係に自由度が生じる。T_{SR0} = 161°C、T_{SL0} = 97°Cとした場合のCOP、η、各エクセルギー損失の結果を、低温再
生器熱源蒸気の出口乾さ度 \(x_{wa} \) すなわち、\(Q_{LR} \) に対し図 13(a), (b) に示す。図(b)上部には、二重効用型のフロー図がフロー名と共に表す示されている（記号は図 1に対応）。図中、矩形は熱源温度（飽和）と高溫再生器温度の差を 3K に固定した場合の計算結果である。これより、\(\eta \) は \(Q_{LR} \) に対し、極大値が存在することがわかる。図 13(b)より極大値は溶液熱交換器の端末温度差に大であることがわかる。すなわち、低温再生器での蒸気生成量を設定しているため、\(Q_{LR} \) と \(T_{SLR} \) は運動しており溶液熱交換器の端末温度差が最小（5 K）のときに \(T_{SHR} \) 極大値をとる。また、\(\eta \) は極大値を境に大きく低下し、設計条件に応じて適切な熱交換器の設計が重要となる。

![Enthalpy diagram](image1)

![Exergy diagram](image2)

Fig.11 Exergy flow in double-effect cycle.

![COP diagram](image3)

(a) COP, exergy coefficient, exergy loss.

![Terminal temperature diagram](image4)

(b) Terminal temperature in high temperature solution heat exchanger.

Fig.13 Effect of steam quality of the flow of \([W_a]\).
再生器溶液温度 T_{SHR0} の影響 高温再生器の溶液温度を155〜167℃に変化させた場合のCOPおよびηを図14に示す。これより、T_{SHR0}の低下とともにCOP、ηが極大値をとるx_mが減少し、極大値は大きくなることがわかる。これは、x_mが低いうすで蒸気からの熱回収量が高いためであり、$x_m=0$、溶液熱交換器の端末温度差$5K$を満たす条件が適応条件となる。

図14で得られた極大値を高温再生器の溶液温度 T_{SHR0}に対し、低温再生器の溶液温度 T_{SLR0} をパラメータとして図15に示す。T_{SLR0}に対しT_{SHR0}には最大値が存在し、その値は T_{SHR0}の低下とともに低下するが、いずれにおいても COPの極大値がほぼ140%に達していることがわかる。また、高温再生器での蒸発と溶液温度差を一定した場合、T_{SHR0}の低下とともにηは高くなる。機器のエクセルギー効率を高めるには、COPだけでなく、熱源温度を低くすることが有効であることがわかる。

7. 結言

単効用及び二重効用吸収冷凍サイクルを対象としてエクセルギーの概念を用いて解析を行った。得られた結果は以下のようである。

(1) 吸収器におけるエクセルギー損失の内約80%以上が吸収プロセスによるものであり、濃度幅を小さく、温度を低下することで損失を低下できる。しかし、濃度幅が2pt以下になると、溶液循環量及び冷却熱量の増大を招き、エクセルギー損失は逆に増加し COPの低下につながる。

(2) 二重効用サイクルでは、エクセルギー効率及びCOPに対し高温及び低温再生器の溶液温度に適点が存在する。つまり、低温再生器での熱回収量を大きくするように、蒸気生成量及び溶液熱交換器の熱交換量を操作することで得られる。

(3) 熱源飽和水蒸気の条件を一定とした場合、COPとエクセルギー効率には一定の関係が存在し、同じ傾向を示す。しかし、熱源温度を可変とした場合、熱源温度の低下に伴いエクセルギー効率が増大する。

(4) 熱源を800KPa乾き飽和水蒸気とした場合、単効用及び二重効用のエクセルギー効率はそれぞれ18%, 30%、COPはそれぞれ80, 140%であったが、熱源と熱交換温度差を3Kとした場合、本計算範囲で単効用及び二重効用のエクセルギー効率はそれぞれ最大38, 37%であった。

参考文献