平行壁間において部分空洞を伴う翼の特性解析*

伊藤 恵**, 鎌田 保**, 塚本 直哉**

Characteristics of a Partially Cavitating Hydrofoil
Spanning Parallel Plane Walls

Jun ITO**, Tamotsu KAMADA and Naoya TSUKAMOTO

** Akita National College of Technology, 1-1 Bunkyo-cho, Iijima, Akita-shi, Akita, 011-8511 Japan

Guide vanes and impellers of turbomachinery operate in the boundary layer of casing and boss, and further operate in cavitation condition in high speed flow. From these circumstances, hydrodynamic charactersitics are analyzed about a partially cavitating hydrofoil which is placed in boundary layer between parallel plane walls. By separation of variables for disturbance pressure, the governing equation is transformed into two problems, of which the one is that of wing sectional plane, the other that of spanwise direction. In the problem of the sectional plane, a simultaneous integral equation is derived and solved by series expansion method. The problem of spanwise direction is reduced to the eigenvalue problem of Sturm-Liouville type which is numerically solved by finite difference method. These two kinds of solution are linearly combined in order to obtain the hydrodynamic characteristics.

Key Words: Partial Cavitation, Hydrofoil, Boundary Layer, Parallel Plane Walls, Wing

1. 緒 言

液体を作用流体とする流体機械を高速運転する場合、
静翼や動翼に部分空洞や超空洞が発生する。また軸流機械では静翼や動翼の両側はケーシングやボスあるいは
内筒になっているので、これらの翼は壁境界層に
によるせん断流中に置かれるのである。しかし、空洞
を伴う翼とそれを取り囲む境界層との干渉は明らかに
されておらず、主流に直線的速度分布を仮定した著者ら
によるせん断流理論(1-2)があるにすぎない。

空洞を伴う流れは非定常で非常に複雑な挙動を示
すものと考えられるが、本研究では定常、非粘性、非
圧縮性流れを仮定し、平行壁間の主流の速度分布に乱
流境界層への乗法則を適用し、既存の解法(3)を応用
することにより平行壁間の速度分布を考慮した三次元
部分空洞翼の特性を解析する。

2. 基礎方程式と境界条件

2.1 基礎方程式

図1に示すように、幅の平行壁間を流れる主流は境界層の速度分布を仮定するせん断流で\(u(y)\)であり、無限遠方からx方向に流れているとする。この流れの場合、長方形の三次元
翼が両側壁に垂直かつx-y平面に配置されており、翼端側よりはよく離した空洞翼は翼根面上の任意
点まで長さ1なる部分空洞状態にされる。オイラーの運動
方程式と連続の式から翼の仮定の成立する範囲で
じょう乱圧力pに関して、無限流体中で空洞のない場合
(3)と同様に式(1)が成立する。

\[
\frac{\partial^2 p}{\partial x^2} + U \frac{\partial}{\partial y}\left(\frac{1}{U} \frac{\partial p}{\partial y} \right) + \frac{\partial^2 p}{\partial z^2} = 0 \tag{1}
\]

式(1)で変数分離解を仮定すると空洞のない場合(4)
と同様に一般解は式(2)より求めることができる。

\[
P = \sum_{k} F(k_x) F(y,k_x) P(x,z,k_x) \tag{2}
\]

ここで\(k_x\)は分離定数であり、後に固有値となるもの
である。\(F(k_x)\), \(P(x,z,k_x)\)はそれぞれ翼幅方向と翼
断面の基本解であり、\(F(k_x)\)は\(Y(y,k_x)\)と\(P(x,z,k_x)\)（ここ
では圧力関数と呼ぶことにする）の線形結合のスペクトル
である。従って、式(1)は翼幅方向の問題と翼切断
平行壁面において部分空洞を伴う翼の特性解析

面の問題とは分かれて、それぞれについて次のような
分方程式が成立する。

\[
\frac{d}{dy} \left(\frac{1}{U^2} \frac{dy}{d\eta} \right) + k_s \gamma U = 0
\](3)

\[
\frac{\partial^2 P}{\partial x^2} - k_s^2 P = 0
\](4)

2.2 境界条件 : まず、流圧力 p は零であることから式(5)が成立する。

\[p = 0; z = \infty\](5)

平行壁面では、壁面に垂直な圧力こう配は零である
ことから式(6)が成立する。

\[\frac{\partial p}{\partial y} = 0; y = 0, \delta\](6)

翼面では接線流れの条件より式(7), (8)が成立する。

\[\frac{\partial z_1}{\partial x} = \frac{w}{U}; 0 < x < l, 0 < y < \delta, z = 0\](7)

\[\frac{\partial z_2}{\partial x} = \frac{w}{U}; l < x < c, 0 < y < \delta, z = 0\](8)

ここで z_1, z_2 は翼下面および反り線の z 座標であり、
w は流速で、z の z 成分である。

空洞部分では圧力一定条件より式(9)が成立する。

\[p = p_0 = \text{const.; } 0 < y < \delta\](9)

\[0 < x < l, z = 0\]

3. 翼断面の解析 : 運動方程式の z 成分と変数分離により得られた基本
解 P から誘導速度の z 成分を求め、接線流れの境界条
件に代入すると 0 < x < l の範囲では式(10)が、l < x < c の
範囲では式(11)が得られる。

\[
dx z(x) = -\frac{1}{2\pi} \left[\Gamma_2(\xi; k_s) \frac{d\xi}{x - \xi} - \frac{1}{2\pi} \left[\frac{\partial}{\partial x} \left(\Gamma_1(\xi; k_s) \frac{d\xi}{x - \xi} \right) \right] \right]
\](10)

\[
\Delta u(x; k_s) = \frac{1}{2} \left[\frac{\partial}{\partial x} \left(\Gamma_1(\xi; k_s) \frac{d\xi}{x - \xi} \right) \right]
\](11)

基本解 P を線形近似し、圧力一定条件に代入すると
式(12)が得られる。

\[
\frac{1}{2} \sigma(\xi; k_s) \Gamma_2(\xi; k_s) + \frac{1}{2\pi} \left[\frac{\partial}{\partial x} \left(\Gamma_1(\xi; k_s) \frac{d\xi}{x - \xi} \right) \right]
\](12)

ここで \(\Gamma_1, \Gamma_2 \) は、空洞後端前方の翼上面と下面の速
度差に結びつけて特徴点分割を、\(\Sigma, \Sigma_0 \) は空洞と翼厚
に結びつけて特徴点分割を、\(\sigma, \sigma_0 \) は各番目の固有値に対
応するキャビテーション係数を表している。また、
\(\Delta u \) および \(\Delta u_0 \) はそれぞれ式(13), (14)のようになる。

\[
\Delta u(x; k_s) = -\frac{1}{2\pi} \int k_s \int \left[R(\xi; k_s) \frac{d\xi}{x - \xi} \right]
\](13)

\[
\Delta u_0(x; k_s) = -\frac{1}{2\pi} \int k_s \int \left[R(\xi; k_s) \frac{d\xi}{x - \xi} \right]
\](14)

また、\(R \) は式(15)で定義される。

\[
R(\xi; k_s) = \frac{1}{2\pi} \int \frac{d\xi}{x - \xi}
\](15)

ここで \(K_0, K_1 \) は零次及び一次の第二種変形ベッセル関
数である。

さらに付帯条件としては、空洞後端の流れ模様とし
て空洞後端厚みを与える模様(6)を導入するものとする
と式(16)を用いることができる。

\[
\int \Sigma_0(\xi; k_s) d\xi = 7.5a^2
\](16)

以上の式(10), (11), (12)は式(16)を付帯条件として、
\(\Gamma_1, \Gamma_2, \Sigma_0 \) を未知関数とする三元連立積分方程式で、
翼断面の支配方程式となる。

4. 翼幅方向の解析

4.1 固有値問題 : 計算値を減らすために流れの
対称性を考慮して、翼幅方向の解析のための問題を次
式(17)，(18)，(19)のように設定する。
\[\frac{d^2Y}{dy^2} = \left(\frac{2}{U} \frac{dU}{dy} \right) \frac{dY}{dy} + k_1 Y = 0; 0 < y < \frac{\lambda}{2} \]

(17) \[\frac{dY}{dy} = 0; y = 0 \]

(18) \[\frac{dY}{dy} = 0; y = \frac{\lambda}{2} \]

(19)

この境界値問題のうなび式(18)，(19)の下に式(17)を解く問題は、スムルム・リュウヴィル型の固有値問題としており、無限個の固有値 \(k_n \)（0）が存在し、それに対応する直交関数系 \(Y(y;k_n) \) を解に持つ。従って式(20)が成立する。
\[\int_0^\lambda \frac{2}{\lambda} \frac{d}{dy} \frac{k_n}{Y(y;k_n)} \frac{dY(y;k_n)}{dy} dy = 0 \quad (n = r) \]

(20)

さらに式(21)のように正規化すると式(22)及び式(23)の関係が成り立つ。
\[\frac{4}{\lambda} \int_0^\lambda \frac{1}{Y(y;k_n)} \frac{dY(y;k_n)}{dy} dy = 1 \]

(21) \[F(k_n) = \frac{2}{\lambda} \int_0^\lambda \frac{1}{Y(y;k_n)} \frac{dY(y;k_n)}{dy} dy \]

(22) \[F(0) = U(0) = \left[\frac{2}{\lambda} \int_0^\lambda \frac{1}{U(y)} \frac{dU(y)}{dy} dy \right]^{\frac{1}{2}} \]

(23)

4.2 差分方式
側壁から翼中央までの 0 から \(\lambda/2 \) を N 分割し、それぞれの小区間の幅を \(h \) とする。
式(17)を差分によって離散化すると式(24)が得られる。
\[Y_{r+1} - 2Y_r + Y_{r-1} = \frac{U_{r+1} - U_{r-1}}{2U_r} \]

(24) \[+ k_1^2h^2Y_r = 0 \]

(25) また、式(18)，(19)はそれぞれ式(26)及び式(27)のようにになる。
\[Y_{r+1} - Y_{r-1} = 0 \]

(26) \[Y_{r+1} - Y_{r-1} = 0 \]

(27)

差分方の導入によって主流の速度分布について何ら制約がなく、任意に与えることができ、この点が本解法の特徴である。ここでは一例として、式(27)，(28)に示すように乱流域幾何で成立するカルマン・プランクトリにより提案されたべき乗法則を仮定し、これより離散値を探索し計算を行うことにする。
\[U(y) = U(\lambda) \left(\frac{2y}{\lambda} \right)^{\frac{1}{2}} \left(\frac{\lambda}{2} < y < \frac{\lambda}{2} \right) \]

(27)

\[U(\frac{\lambda}{2}) = \frac{2}{\lambda} \left(\frac{2(\lambda - y)^{\frac{1}{2}}}{\lambda} \right) \left(\frac{\lambda}{2} < y < \lambda \right) \]

(28)

U が求められたことにより、式(24)に代入し差分方程式と式(29)が得られる。
\[\left(1 + \frac{h}{n} Y_r \right) Y_{r+1} + \left(1 - \frac{h}{n} Y_r \right) Y_{r-1} = \left(1 + \frac{1}{n} Y_r \right) Y_{r+1} - \left(1 - \frac{1}{n} Y_r \right) Y_{r-1} = 0 \]

(29) ここで \(y_r \) 及び \(h \) は式(30)のようになっている。
\[y_r = \frac{\lambda}{2N}, \quad h = \frac{\lambda}{2N} \]

(30)

4.3 固有方程式
式(17)の \(y=0 \) における極限と式(25)，(29)より次式が得られる。
\[\left(2 - K \right) Y_{r+1} + \left[2 - \frac{4}{n} \right] Y_r + \left(2 - \frac{4}{n} \right) Y_{r-1} = 0 \quad \text{（式(31)）} \]

(31) \[\left(1 + \frac{1}{n} Y_r \right) Y_{r+1} + \left(1 + \frac{1}{n} Y_r \right) Y_{r-1} = 0 \quad \text{（式(32)）} \]

(32) 式(32)の \(i=N \) で式(26)を考慮すると、式(31)，(32)は \(Y_r \) から \(Y_N \) までの \(N+1 \) 個の未知数をもつ同次型連立方程式となる。この連立方程式が有理解をもつための必要十分条件として式(33)に示す固有方程式が成立しなければならない。
\[\left(2 - K \right) Y_{r+1} + \left[2 - \frac{4}{n} \right] Y_r + \left(2 - \frac{4}{n} \right) Y_{r-1} = 0 \quad \text{（式(33)）} \]

(33) ここで \(K \) は \(K_n \) と置き次元となる。
\[K_n = \left(\frac{\lambda k_n}{2N} \right)^2 \]

(34)

固有方程式(33)を QR 法を用いて解くことによって \(K \) が求まり、\(k_n \) は決定される。
\[U_r \] を求めるためには \(U_0 = 1 \) と置いて式(33)より \(Y_r \) から \(Y_N \) までを求め、これらを用いて式(21)の積分を行いその積分値を \(S \) とする。そして \(Y_r(k_n)/S^{\frac{1}{2}} \) と新たな \(Y_r(k_n) \) と定義しておきることで規格化の条件が満足する \(Y_r \) が決定される。

5. 特性
5.1 局所揚力係数
局所揚力係数は、翼上下面の
圧力差の翼弦方向の積分

\[l(y) = \int [p(x, y, -) - p(x, y, +)] dx \](35)

により得られる。

局所揚力係数は式(36)のように定義する。

\[C_L(y) = -\frac{2l(y)}{\rho U(y)^2} \](36)

式(2), (35), (36)より局所揚力係数は式(37)のようになる（記号は文献(2)の式(29), (30)を参照）。

\[C_L(y) = -\frac{2\pi}{U(y)^2} \sum_{k=0}^{n} F(k_x) \frac{y'}{y} \left(\frac{I_f}{2} \frac{2A_0(k_x)}{\pi} + \frac{A_0(k_x)}{2} \right) \]

\[+ \frac{A_0(k_x)}{2} + \frac{c - I_f}{c} \left(\frac{B_0(k_x)}{\pi} + \frac{B_0(k_x)}{2} \right) \](37)

\[5.2 \text{ 全揚力係数と誘導抵抗係数} \]

全揚力は、翼上下面の圧力差を翼弦方向と翼弦方向に二重積分することによって次の式(38)から得られる。

\[L = \int \int [p(x, y, -) - p(x, y, +)] dx dy \](38)

全揚力係数を式(39)のように定義する。

\[C_L = -\frac{2L}{cL} \int U(y)^2 dy \](39)

式(2), (38), (39)より全揚力係数は式(40)のようになる。

\[C_L = -\frac{2\pi \lambda}{cL} \sum_{k=0}^{n} F(k_x) \frac{y'}{y} \left(\frac{I_f}{2} \frac{2A_0(k_x)}{\pi} \right) \]

\[+ \frac{A_0(k_x)}{2} + \frac{c - I_f}{c} \left(\frac{B_0(k_x)}{\pi} + \frac{B_0(k_x)}{2} \right) \](40)

同様に誘導抵抗係数を式(41)のように定義する。

\[C_{D_{\text{v}}} = -\frac{2D_{\text{v}}}{cL} \int U(y)^2 dy \](41)

これより誘導抵抗係数は式(42)のようになる。

\[C_{D_{\text{v}}} = -\frac{1}{8} \frac{2\pi \nu \lambda}{cL} \sum_{k=0}^{n} F(k_x) \frac{y'}{y} \left(\frac{I_f}{2} \frac{2A_0(k_x)}{\pi} \right) \]

\[+ \frac{A_0(k_x)}{2} + \frac{c - I_f}{c} \left(\frac{B_0(k_x)}{\pi} + \frac{B_0(k_x)}{2} \right) \](42)

\[5.3 \text{ 圧力係数分布} \]

圧力係数を式(43)のように定義する。

\[C_p = \frac{2p}{\rho U(y)^2} \](43)

式(2), (43)及び圧力関数 \(\lambda \) および翼弦方向圧力係数分布は \(\lambda x < l \) までの範囲では式(44), \(\lambda x < c \) までの範囲では式(45)のようになる。

\[C_p(x, y, 0) = \frac{2}{U(y)^2} \sum_{k=0}^{n} F(k_x) \frac{y'}{y} \left[\frac{1}{2} \gamma_1(x, k_x) \right. \]

\[- \frac{1}{2\pi} \int \Sigma_0(x, k_x) \frac{d\xi}{\xi - x} \left. - \frac{1}{2\pi} \int \Sigma_0(x, k_x) \frac{d\xi}{\xi - x} \right] \]

\[- \Delta w(x, k_x) \](44)

\[C_p(x, y, 0) = \frac{2}{U(y)^2} \sum_{k=0}^{n} F(k_x) \frac{y'}{y} \left[\frac{1}{2} \gamma_1(x, k_x) \right. \]

\[- \frac{1}{2\pi} \int \Sigma_0(x, k_x) \frac{d\xi}{\xi - x} \left. - \frac{1}{2\pi} \int \Sigma_0(x, k_x) \frac{d\xi}{\xi - x} \right] \]

\[- \Delta w(x, k_x) \](45)

\[5.4 \text{ 空洞厚さ分布} \]

空洞厚さ分布は \(\delta \) を積分区であることにより式(46)のようになる。

\[\delta = \frac{1}{U(y)^2} \sum_{k=0}^{n} F(k_x) \frac{y'}{y} \left[\frac{\pi}{m + 1} \right. \]

\[\left. - \frac{1}{2} \sin \theta - \arcsin \frac{\sin \theta}{2} \right] \]

\[\times \left(\frac{1}{2} \cos \frac{\theta}{2} - \frac{1}{2} \arctan \frac{1 - \cos \theta}{1 + \cos \theta} \right) \]

\[\left(\pi + \frac{1}{2} \sin \theta \right) \]

\[\frac{1}{4} C_0(k_x) \]

\[\left(\frac{\sin(m + 1)\theta}{m + 1} \right) \]

\[- \frac{\sin(m - 1)\theta}{m - 1} \](46)

6. 計算例

具体的な計算例として、翼は矩形平板翼、迎え角は \(4^\circ \) 、主流の速度分布には \(m \) を選びべき法則を仮定して種々の特性を求めた。なお \(I_c \) は空洞長さ、 \(\lambda \) はアスペクト比、 \(\eta \) は翼断面位置を表しており、

\[\eta = y / (\lambda / 2) \] で定義しており、また翼弦方向の解析における分割数 \(N \) は 49 としてある。

図 2 から図 4 は局所揚力係数を示している。横軸は \(0 \) から \(\lambda / 2 \) までの翼弦方向の位置を表している、 \(0 \) は翼先端、 \(\lambda / 2 \) は翼の中央にあたる。空洞が長いほど揚力係数の値は大きくなる。側壁付近では急激な上昇をみせ、翼の中央に近づくにつれて前方の値を取るようになる。また、主流のべき乗値が大きいほど、あるいはアスペクト比の値が大きくなるほど翼の中央に近づくにつれて一定の値をとるようになり、二次元的になることが分かれる。
図5と図6は全揚力係数と誘導抗力係数を示しています。横軸にはアスペクト比の逆数をとっています。空洞が長くなるほど、全揚力係数と誘導抗力係数は大きな値をとっており、特に空洞後端が翼前線に近い\(l/c=0.75\)ではこれが顕著である。また、主流の指数法則のべき乗係数\(n\)が小さいほうが全揚力係数及び誘導抗力係数のいずれも小さな値をとっている。

図7から図9は翼弦方向の圧力係数分布を示しています。空洞部分では一定の値をとっており、翼下側では翼前線に向かって上昇している。翼上側では空洞長さの影響は大きいが、全体としてはべき乗値、アスペクト比いずれの影響も極めて小さい。

図10から図12は空洞厚さ分布を示している。空洞が長くなるほど空洞厚さはほぼ比例して大きくなるが、べき乗値の影響は比較的小さくアスペクト比の影響は大きい。

Fig.2 Local Lift Coefficients
(Effects of Cavity Length)

Fig.3 Local Lift Coefficients
(Effects of Power Law)

Fig.4 Local Lift Coefficients
(Effects of Aspect Ratio)

Fig.5 Total Lift and Induced Drag Coefficients
(Effects of Cavity Length)

Fig.6 Total Lift and Induced Drag Coefficients
(Effects of Power Law)
Fig. 7 Pressure Coefficients (Effects of Cavity Length)

Fig. 8 Pressure Coefficients (Effects of Power Law)

Fig. 9 Pressure Coefficients (Effects of Aspect Ratio)

Fig. 10 Cavity Thickness Distributions (Effects of Cavity Length)

Fig. 11 Cavity Thickness Distributions (Effects of Power Law)

Fig. 12 Cavity Thickness Distributions (Effects of Aspect Ratio)
図 13 は全揚力係数に及ぼす側壁境界層の影響を示す。平行平面間内の流れでは境界層を考慮しない場合には流され、これらは二次の流れと一致することから、全揚力係数を揚力係数の二次元値で除したもの（E=C_{L2}/C_{L∞}）が二次元の揚力係数を影響係数として示している。最もとして \(\alpha = 4^\circ \)、\(l/c = 0.5 \) の場合では \(E = 0.94 \) となり、平均的には境界層の存在によって \(5 \sim 6\% \) 程度の全揚力係数の減少が見られる。

\[
\begin{array}{|c|c|}
\hline
\text{Flat Plate} & \alpha = 4^\circ \\
\hline
\text{N} & \text{1/c = 0.5} \\
\text{N} & \text{1/n = 1/7} \\
\text{N} & \text{\lambda /c = 10} \\
\hline
\end{array}
\]

Fig. 13 Effects of Boundary Layer on Total Lift Coefficients

7. 結言

（1）空洞発生のない既存の理論と同様の方法で変数分離を行い、翼断面に空洞長さ一定の仮定を行うと、翼断面と翼幅方向の不変の問題に分離され、翼断面の問題に既存の解法が適用された。

（2）翼幅方向の問題はスツルム・リュウヴィル型の固有値問題となり、差分方程式に変換され、主流の速度分布などカルマン・ブラントルのべき乗則を適用にて、固有方程式を誘導し、これより固有値、またこれを基に固有関数およびスペクトルが得られた。

（3）翼断面の問題の解の数値解と翼幅方向の問題の数値解との結合によって、平行壁間の境界層の速度分布を考えた部分空洞翼について、局所揚力係数、圧力係数、全揚力係数、誘導抗力係数、空洞厚さ分布等の特性が明らかにされた。

（4）側壁境界層の存在が、局所揚力係数を側壁に向かって大きく増大させること、全揚力係数を減少させること、誘導抗力を生じさせることなどが明らかにされ、かつ定量的に示された。

結論に、本研究にご協力いただいた元秋田高等本科学学生長谷川進一、加賀谷信吾の両氏及び専攻学生田村純也、富樫賀一の両君に謝意を表す。

また、本研究は文部省の科学研究費基盤研究（C）07650228によることを付記する。

付録 1. 式（10）〜（15）の導出の基本的な考え方

①運動方程式と連続の方程式から、圧力についての単一の微分方程式が導かれる。②この方程式は、翼幅方向と翼断面の座標で変数分離され、2 種の微分方程式を解く問題に帰着される。③翼幅方向の問題は、主流の速度分布のみに依存する、スツルム・リュウヴィル型の固有値問題である。④翼断面の問題は、第 2 種変形ベッセル関数を基本解に一つ微分方程式となり、ポテンシャル理論から積分表示される。⑥翼面上の接続流れる条件と空洞部分の圧力一定条件に、線形化された積分表示を代入することにより連立積分方程式（10）〜（15）が導出される。

付録 2. 計算結果のジグザグについて

図 4 などにジグザグが見られ、アスペクト比 l/c の増大と共に大きくなっている。これは翼断面を分割して得られる区間幅が、アスペクト比（翼幅）の増大と共に大きくなるため、差分方程式の解の精度が低下することによると考えられる。図 A には、アスペクト比 10 の分割数 N とジグザグの関係を示した。N が大きくなるにつれてジグザグが小さくなっている。

参考文献

（1）伊藤，機論，56-530（1990），pp. 2871-2878。

（2）伊藤，機論，57-536（1991），pp. 1289-1296。

（3）von Karman, Th. and Tsien, H.S., Q. Appl. Math., 3-1（1945），pp. 1-13。

（5）西山・伊藤，機論，47-420（1981），pp. 1433-1438。