サブミクロン蛍光粒子を用いた微小空間における流れ場計測*
(トレーサ粒子のブラウン運動を考慮した局所空間平均 PTV の提案)

稲葉靖二郎*1, 佐藤洋平*2
菱田公一*3, 前田昌信*3

Flow Measurements in Microspace Using Sub-Micron Fluorescent Particles
(Proposal of Spatial Averaged Time-Resolved PTV
Considering Brownian Motion of Tracer Particles)

Seijiro INABA, Yohei SATO,
Koichi HISHIDA*4 and Masanobu MAEDA

**Department of System Design Engineering Faculty of Science and Technology, Keio University,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa, 223-8522 Japan

A measurement technique for a flow field in a microchannel was developed using sub-micron fluorescent particles. The present study focused on a novel measurement technique so called Spatial Averaged Time-resolved Particle Tracking Velocimetry (SAT-PTV) which is able to detect the temporal variation of a fluid flow eliminating the effect of Brownian motion of the sub-micron tracer particles. Velocity vectors of individual tracer particles were averaged within a local small area, instead of temporal average, to realize higher time resolution. SAT-PTV method was evaluated by synthetic particle images in both a uniform flow and a flow with linear velocity gradient and the method confirmed the reduction of the measurement errors associated with Brownian motion. The validation of this technique was performed in a microchannel flow with the time resolution of 37 ms.

Key Words: Flow Measurements, Digital Image Processing, Velocity Distribution, Microspace, PIV, PTV, Fluorescent Particles, Brownian Motion

1. 緒 言

微細加工技術を用いてマイクロチャネルをチップに配置し、内部に微量な流体を流す Lab-on-a-chip やμ-TAS の開発が盛んに行われている(1)(4). その内部では微小空間における流体現象を利用し、微量な試料の分離や混合を効果的に行うことが可能である。上述の操作を行う際に内部の流れを制御するため、非定常な流れとななる。これらの流体を用いたマイクロドライスの更なる高効率化・高精度化のためには、内部の流れを詳細に捉える必要がある。

速度計測の手法は多数存在するなかで、粒子画像流速計(PIV)(5)は流れ場全体の把握が可能である点から様々な分野での流れの速度計測に利用されている。Santiago ら(6)は顕微鏡を用いて PIV の手法を微小空間の速度計測に初めて適用した(マイクロ PIV). 微小空間における速度計測で用いるトレーサ粒子は数百 nm と非常に小さく、対象とする流れ場の速度が遅いため、トレーサ粒子のブラウン運動が顕著となる。PIV は粒子が流れに追随し画像フレーム間で粒子の相対位置が変化しないという前提で使用するが、ブラウン運動によりこの前提が満たされない可能性があり速度検出の際に影響を受ける。ブラウン運動が偏りのないランダムな運動であることから、Santiago ら(6)は速度ベクトルの時間平均を行い、Meinhart ら(7)(8)は PIV の相関演算の際に算
出される相関値マップを時間平均し、速度ベクトル分布を平滑化している。

定常な流れ場を計測する際には、このような時間平均操作はブラウン運動の速度測定を含む影響を取り除くのに有効である。しかし、上記したLab-on-a-chipやμTAS内部のように、流体の挙動を任意に制御する非定常な流れ場を目的とした計測を実行するとき、時間平均操作はブラウン運動の影響である速度ベクトルの変動成分を取り除くと同時に、流れ場に存在する時間的な速度変化が平滑化し、速度情報から取り除いてしまうのが恐れがある。ブラウン運動による速度ベクトルの変動成分と流れ場に存在する速度変化を分離し、時間分解能を犠牲にすることなくブラウン運動の影響を取り除く手法の開発が必要となる。

本研究では、ブラウン運動を変化させないランダムな運動という性質を基に、瞬時の速度ベクトルを局所的に時間平均を行うことで、ブラウン運動が速度計測に与える影響を除去する手法を提案する。この手法は、PIVで計測された速度ベクトルを単に空間平均するのではなく、各粒子の速度を計測する粒子追跡法（PTV）を用いて同一領域の速度情報を増加させることで、空間分解能の低下を防ぐ手法である。数値シミュレーションとしてモンテカルロ法で作成したサブミクロ電子顕微鏡粒子画像を用いて本手法の有効性を検証し、実際の微小空間における流れ場に適用した。

2. 記号表

d₀	粒子直径
D	拡散係数
H	マイクロチャネルの深さ
k_b	ポルツマン定数
N	探索窓内の粒子数
Re	レイノルズ数
s	プラウン運動による移動距離
s_b	プラウン運動の速度ベクトル
s_f	流体の速度ベクトル
s_p	トレーサ粒子の速度ベクトル
T	相対温度
Δt	時間間隔
μ	粘性係数

3. 微小空間における速度計測

3.1 計測装置 顕微鏡(Nikon, E800)を用いた計測装置図を図1に示す。トレーサ粒子には流路の微小化に対応するため直径の小さいものを選定し、波長以下の粒子をそっと粒子の位置検出が容易となるように、表1に示すような蛍光剤を含むポリステレン粒子(Duke Scientific Co.)を使用した。

今回対象としたマイクロチャンネル内の流速は遅く、カメラのシャッタースピードで画像凍結が可能であったので、光源に連続光の水銀ランプを用いたが、パルス光を照射することで、より高速な流れに対応可能である。フィルタによりトレーサ粒子に含まれる蛍光剤の吸収波長(468 nm)の光を流路に照射し、もう一方のフィルタで入射光を除し、トレーサ粒子からの発光(508 nm)を494 pixels x 656 pixels x 12 bitsのCCDカメラ(浜松フォトニクス、C-4880-80)で撮影した。カメラのフレーム間隔は37 msとして、対物レンズは倍率60倍で光の屈折による像の歪みを抑える効果があり、被写界深度の浅い(Meinhartらの)の定義した被写界深度の式で、粒子径400 nmのとき本計測装置の被写界深度は2.5 μmである。水銀吸収対物レンズ(Nikon, CFI Plan Apo 60X)を使用した。流路の温度を一定に保つために、観察台の上に恒温プレートを設置し、293 Kに設定した。

Fig. 1. Schematic of a measurement system using a microscope.

| Table 1. Properties of fluorescent particles |
diameter of particles	200, 400, 1000 nm
absorption wavelength	468 nm
emission wavelength	508 nm
density	1.05 g/cm³
3.2 実験流路 光硬化性樹脂(SU-8)を用いて、フォトリソグラフィ法によりガラス基板上にマイクロチャネルを製作した(図2)。顕微鏡用カバーガラス(直径 50 mm, 厚さ 170 μm)を有機溶剤に浸して超音波洗浄を行い、塵・油などの汚れを取り除いた。洗浄したガラス上に SU-8 をスピンコーターを用いて均一 (45 μm) に塗布し、373 K 設定のオーブンで 25 分間加熱した。次にこの上にマスクを被せ、紫外光を 40 秒間照射し必要な部分を固め、343 K 設定のオーブンで 15 分間加熱した。最終的に現像液に浸し、光の照射されなかった部分を取り除いた。流路の蓋に関しては、もう一枚のカバーガラス上面に SU-8 を 1 μm の厚さで塗布し、先ほど作成した流路と張り合わせ、373 K 設定のオーブンで 5 分間加熱を行った。紫外光を 120 秒間照射し、再びオーブンで 15 分間加熱した。上述の方法で図2のマイクロチャネルは製作した。流路の長さ 35 mm, 幅 100 μm, 深さ 45 μm である。

3.3 速度計測における問題点 数十〜数百 μm オーダーの微小空間における流体の速度をトレーサ粒子を用いて計測するとき、流れ場を乱さないために直径数百 nm の非常に小さなトレーサ粒子を用いる。このようなトレーサ粒子はプラウン運動が顕著になり、流体の速度検出に影響を与える。図3に示した粒子画像(観測面 z/H = 0.5)の流動場は Re = 5 × 10^3 と層流であるにも関わらず、マイクロ PIV で計測された速度ベクトルは図4のように乱れたものとなる。

プラウン運動は時間的にも空間的にも偏りのないランダムな運動であるので、速度ベクトルの平均操作(時間平均または空間平均)によって影響を取り除くことができる。図5が時間を通じて10枚の瞬時速度ベクトルを平均したものであり、プラウン運動の影響による速度ベクトルの乱れが取り除かれている様子が判る。定常な流れ場の速度計測には、プラウン運動が速度検出に与える影響を取り除くために時間平均が有効で、高空間分解能での計測が実現される。

しかし、時間的に速度が変化する非定常な流れ場を計測するためには、瞬時速度ベクトルですべての流体粒子がサンプリングされるように、時間間隔を短くし、サンプリングを多回繰り返すことが必要である。
Fig. 6. Schematic of Spatial Averaged Time-resolved PTV method considering the effect of Brownian motion on velocity detection.

4. SAT-PTV 法

4.1 概要　汎用 PIV により求めた速度ベクトルを単に空間平均すると、空間分解能の低下をもたらし、流れ場を詳細に捉えることが難しくなる。粒子追跡法(PTV)により各粒子の速度を計測し、PIV に比べ同一領域における速度情報を増加させた後に、空間平均を行うことで空間分解能の低下を避けることができる。PIV に用いる粒子画像は粒子濃度が高く、PTV 法では画像フレーム間で粒子の対応付けが困難であるので、粒子対応付けの精度向上には Super-resolution PIV \(^{10} \)に見られるような手法、即ち、汎用の PIV で計測して粒子群の移動距離を求め、その距離情報を手がかりに PTV を行うことで、より高空間分解能を得ることが可能である。しかしながら、これらの手法のみでランダムな変動を持つブラウン運動の影響を除去することはできない。そこで、PTV により計測された速度ベクトルを探索窓内で局所的に空間平均し、トーザ粒子のブラウン運動が速度検出に与える影響を取り除く方法として、SAT-PTV(Spatial Averaged Time-resolved Particle Tracking Velocimetry)を提案する。

図 6 の左側の図が示すように 2 画像間の各粒子の速度ベクトル \(s_p \) は流体の速度ベクトル \(s_f \) とブラウン運動の速度ベクトル \(s_b \) の合成ベクトルである。例えば、探索窓内に \(N \) 個のトレーサ粒子が存在するとき、図 6 の右上に示された SAT-PTV のベクトルは次式の左辺で表される。

\[
\frac{1}{N} \sum_{\text{window}} s_p = \frac{1}{N} \sum_{\text{window}} s_f + \frac{1}{N} \sum_{\text{window}} s_b \quad (1)
\]

ブラウン運動は空間的にも厳りのないランダムな運動のため、粒子数 \(N \) の増加に伴い \(s_b \) の総和が小さくなり、更に分母の \(N \) が大きくなるため右辺の第 2 項がゼロに近づく。粒子数 \(N \) がブラウン
サブミクロン蛍光粒子を用いた微小空間における流れ場計画

時間間隔Δtにおいてブラウン運動による粒子の移動量sの2乗平均は、拡散係数Dを用いて式(2)のように表される。

\[\langle s^2 \rangle = 2DA \]

\[D = \frac{k_B T}{3 \pi \mu d} \quad (2) \]

ブラウン運動による粒子の移動距離の分布は平均移動距離が式(2)を満たすガウス関数とした。粒子の移動方向と距離は3次元的で、流体の移動距離とブラウン運動の移動距離の和である。

粒子画像を生成する上でのパラメータはすべてで改善が行う実験の条件と細部。作動流体は水として粘性を与え、温度293 K、画像フレーム間を37 msとした。このときブラウン運動によるトレーサ粒子の移動量は粒径のみに依存する。粒径は0.2, 0.4, 1.0 mmと変化させ、一様流と速度勾配を持つ流れの粒子画像を作成した。PIV、時間平均PIV、SAT-PTVと3つの方法で計測を行い、SAT-PTVの性能を評価した。ここで用いたPIVは相互関連PIVでサブピクセル精度を出すためにガウシアン補間法を用いている(2)。時間平均PIVは瞬間の速度ベクトル分布10枚分を平均したものである。

4.2 性能評価のための粒子画像 モンテカルロ法を用いてトレーサ粒子のブラウン運動を組み込んだ微小空間における粒子画像を作成した。各粒子は微小空間に3次元的にランダムに配置し、粒子像の輝度は256階調で表現した。粒子像を作成するとき、光の回折理論(11)を用いた。点光源からの球面波は円形開口によって回折し、焦点近傍において3次元的な強度分布を持つLommel関数により焦平面からずれた位置に存在する粒子像の強度分布を求めることが可能であり、図7に示すように粒子のぼやけを表現した粒子画像を作成した。

Fig. 7. The synthetic particle image (d_p = 400 nm).

(a) Uniform flow (b) Flow with linear velocity gradient

Fig. 8. Schematic of flow types generated in simulation.
Fig. 9. Measurement error in a uniform flow changing the number of particles within an interrogation window ($d_p = 400$ nm).

Fig. 10. Measurement error in a uniform flow changing the particle diameter at ten particles in an interrogation window.

Fig. 11. Measurement error in a flow with linear velocity gradient changing the gradient ($d_p = 400$ nm).

Fig. 12. Velocity profiles in a flow with linear velocity gradient estimated by PIV and SAT-PTV technique ($d_p = 400$ nm).

小さなこと。これは時間平均 PIV が粒子画像 10 枚分の豊富な情報を含むためである。瞬時速度計測に関して比較ると、SAT-PTV の計測誤差が PIV より常に抑えられ、特に探索窓内に粒子数が 10 個以下のようなときは、SAT-PTV が PIV より 20%以上の誤差を低減している。

4.4 性能評価（粒子直径） 前節と同様の一様流において、粒子直径を 200, 400, 1000 nm と変化させた粒子画像を作成した。粒子径の減少に伴いブロウン運動は激しくなる。

SAT-PTV の探索窓内における粒子数を 10 個としたいのトレーサ粒子直径による速度検出における誤差の変化を図 10 に示す。時間平均 PIV の誤差は粒子数が 1000 とときに 25%、1000 nm のときに 50%誤差を低減した。粒子径の減少に伴い SAT-PTV による計測誤差が増加しており、ブロウン運動による移動量が大きいときは探索窓内の粒子数が 10 個程度ではランダム成分を打ち消すのは難しく、図 9 の結果から探索窓内の粒子数を増加させる必要があることが判る。

4.5 性能評価（速度勾配の影響） 図 8 (b) に示すように、y 方向に 1 pixel 進むと x 方向に 0.01-0.05 pixels やつ増加する一定の速度勾配を有する流れ場における粒子画像 ($d_p = 400$ nm) を作成した。

探索窓の大きさを 40 × 40 pixels と設定し、速度勾配の大きさと計測誤差の関係を調べたところ図 11 に示す結果が得られた。時間平均 PIV の誤差は小さく抑えられているが速度勾配が大きくなるにつれ計測誤差は増大した。瞬時速度計測に注目すると、PIV に比べ SAT-PTV の誤差は安定して低く抑えられている。SAT-PTV は壁近傍のような速度勾配の大きい流れ場の計測に適しており、さらに時系列で速度計測が可能である。

図 12 は速度勾配の大きさ 0.05 pixels/pixel のときの PIV と SAT-PTV により計測された速度ベクトル分布を示す。PIV は速度の遅い領域で流体の
速度を正確に捉えていないが、SAT-PTV の結果はせん断流れをより的確に表している。この結果から SAT-PTV が速度勾配を持つ流れ場計測に適しており、実際の流れ場計測においても、ブラウン運動による速度変動と流れ場自身の速度変化の分離の可能性が期待される。

5. SAT-PTV の実流動場への適用

図 2 に示すマイクロチャネル内の流れ場に SAT-PTV を適用した。SAT-PTV は 2 次元化により粒子を抽出し、周りの粒子の相対位置から粒子の対応付けを行った。このとき誤った対応付けを防ぐために PIV の結果を利用して狭い範囲で対応する粒子を探索した。

イオン交換水にトレーサ粒子を混入し、マイクロチャネルに注入した。流路中心での流速 50 μm/s と流路幅 100 μm に基づくレインノルズ数 Re は 5 \times 10^3 であった。トレーサ粒子は直径 200, 400, 1000 nm のものを利用した。各粒子の移動距離を検出し、SAT-PTV を用いて局所的な平均移動距離を求めた。探索窓内における粒子の平均移動距離と各粒子の移動距離の差である変動成分を求めると、図 13 のように式(2)から求められるブラウン運動の平均移動量と一致した。これは SAT-PTV の空間平均を行う際に取り除かれる粒子の移動距離の変動成分がブラウン運動による粒子の移動であり、SAT-PTV によりこの成分が取り

![Fig. 13. Averaged particle displacement between mean particle displacement and each particle one in an interrogation window.](image)

(a) Small interrogation window (40×40 pixels).

![Fig. 14. Instantaneous velocity-vector fields.](image)

(b) Large interrogation window (80×80 pixels).

![Fig. 15. Number of vectors averaged within an interrogation window.](image)
除かれることを意味する。
図 14 に直径 400 nm のトレーサ粒子を用いたときの SAT-PTV により計測されたマイクロチャンネル内（$H = 0.5$）の瞬時の速度ベクトル分布、図 15 に探索窓内で空間平均を行う速度ベクトル数の確率密度を示す。探索窓の大きさを変え、平均する速度ベクトル数の確率密度と速度ベクトルの乱れを観測した。探索窓の大きさを $6.7 \times 6.7 \mu m$ (40 x 40 pixels) と設定すると、図 15(a)のように平均 3 個の PTV 速度ベクトルが空間平均される、前節でのモンテカルロ法により作成された粒子画像の結果(図 9)から判るように、速度ベクトル 3 個ではブラウン運動が速度検出に与える影響を取り除くのは難しく、図 14(a)のように瞬時の速度ベクトル分布は乱れている。探索窓の大きさを 2 倍の $13.3 \times 13.3 \mu m$ (80 x 80 pixels) に設定し、図 15(b)に示すように探索窓内で平均 7 個の速度ベクトルを平均したところ、図 14(b)のように、図 14(a)より平滑化された速度ベクトルが計測された。SAT-PTV は 1 個の粒子画像から速度計測が可能であり、本研究の目的である時間分解能の向上は達成された。ブラウン運動による計測誤差を減少させるために探索窓を大きくし空間平均する速度ベクトル数が 3 個から 7 個に増加すると、図 9 より計測誤差は 3 分の 1 低減すると判断され、実際に図 14(a)より(b)の方がより的確な速度計測が行われている様子が観測された。

本研究の時間分解能は CCD カメラの画像フレーム間隔 37 ms であった。SAT-PTV により時系列速度分布計測が可能となり、マイクロチャンネル内における速度変化検出の可能性が示された。

6. 結 言

微小空間における流体の時間的な速度変化を計測するために、速度ベクトルを局所的に空間平均する計測法である SAT-PTV を提案した。ブラウン運動が速度検出に与える影響を取り除く方法として空間平均をとることによって達成し、時間分解能を犠牲にすることなく瞬時の速度分布計測を可能とした。PTV による豊富な速度情報の獲得により、空間平均による時間分解能の低下を防ぐことができる。この手法は、PIV により粒子群の移動距離の捕掛を得たのちに PTV を行うた

数値シミュレーションとしてモンテカルロ法で作成したサブミクロン粒子画像を用いて SAT-PTV の性能評価を行ったところ、本手法は PIV 法よりブラウン運動が速度検出に与える影響を低減でき、特に速度勾配のある流れ場において有用であった。実流动場であるマイクロチャネル内流れに SAT-PTV を適用したところ、シミュレーション画像の結果と同様、探索窓を大きくし平均する速度ベクトル数を増加させると、ブラウン運動の影響による速度計測誤差が低減された。

SAT-PTV は 1 個の粒子画像からブラウン運動の影響を低減された瞬時の速度ベクトルが計測でき、ブラウン運動による速度の変動成分と流れ場自身の速度変化を分離することが可能であることから、マイクロチャネルにおける加速度流れや周期流れ、化学反応場や電気浸透流などの計測に適用可能である。

本研究を遂行するにあたり、様々な助言を頂いた石東真典氏(産総研、NEDO)、流路作成に関する助言を頂いた松本壮文工博士(産総研)、江本正雄工博士(産総研)に記して謝意を表す。なお本研究の一部は文部科学省基盤研究(B)(No.13555057)から助成を受けた。

文 献

(1) マイクロ化学分析システム(μTAS)開発項目（産総研）
(7) Meinhart, C. D., ほか 2 名, Exp. in Fluids, 27 (1999), 414.