自由液面流れに対するコロケート格子を用いた
陰的計算法(C-ISMAC 法)の適用性*

牛島省*, 福津家久**

Implicit Numerical Algorithm (C-ISMAC Method) for
Free-Surface Flows with Collocated Grid System

Satoru USHIJIMA*** and Iehisa NEZU

** Global Environment Engineering, Kyoto University, Yoshida-honmachi, Kyoto-shi, Kyoto, 606-8501 Japan

An implicit numerical algorithm (C-ISMAC method), which is based on an implicit-SMAC method in the staggered grid, has been proposed for free-surface flows with the collocated grid system. It has been shown that a CBP (Cell-Boundary Pressure) scheme, which utilizes \(\rho^* \) on cell boundaries in the prediction stage of the MAC method, is effective to deal with the pressure field. Taking account of this result, some distinctive treatments for the pressure variable were employed in developing the C-ISMAC method. As a result of the computations in cavity flows and free-surface flows, it was shown that the C-ISMAC method enables us to use higher-order spatial schemes as well as to decrease the necessary computational time.

Key Words: Implicit SMAC, C-ISMAC Method, Collocated Grid, Free-Surface, QSI Scheme

1. はじめに

有限差分法に基づく非圧縮性流れの計算では、近年コロケート格子配置の有用性が多く示されている1,2). Rhie and Chow3)による同格子配置を用いた初期の計算では、SIMPLE系の解法4)が適用された。これに対して、最近の流体解析、例えばチャンネル内乱流のシミュレーション1,2)や内部乱流が支配的となる自由液面流れ3)などでは、空間的に精度の高いスキームが不可欠であるため、その取り扱いが比較的容易なMAC法5)あるいはその改良型の解法6,7)である、いわゆるMAC系の解法を用いるのが一般的となっている。

しかし、MAC系の解法では流速の推定値が陽的に計算されるので、CFL条件等の制約が生じ、通常時間刻み \(\Delta t \) を小さく取った長時間の計算が必要となる。これに対して、陰的な解法では、安定条件に関す制限が緩くなり、計算時間を短縮できることが多いが、高次精度の計算スキームに基づく離散化式の取扱いが極めて煩雑となる場合が多く、スキームによっては離散化式の導出が不可能な場合もある。

これらを考慮すると、コロケート格子上で高速計算が可能な陰的解法のアルゴリズムを利用し、しかも高次精度のスキームの扱いが容易な流体計算法の提案が望まれる。スタグーン格子においては、MAC系解法の予測段階における流速の推定値の残差成分のみに陰的な解法を適用するImplicit SMAC法9,10)が提案されている。この手法では陰解法の利点が生かされると同時に、高次精度のスキームを陽的に扱えるので、上記の条件における流体計算法の一つであると考えられる。しかし、同手法をコロケート格子で用いる場合には、いくつかの注意点が必要となる。

本研究ではまず、コロケート格子では、MAC系解法の予測段階において、圧力勾配はセル中心ではなく、セル境界で評価する必要があることを示す。このように、セル中心に圧力勾配を用いない条件下では、安定解において流速の推定値の残差成分が0に収束するというスタグーン格子が有する特性を利用できないため、Implicit SMAC法は利用できない。このため、本研究では圧力の取り扱いに改良を加えた手法(C-ISMAC法)を提案する。このC-ISMAC法をキャビティフローと自由液面流れへ適用し、MAC系解法との比較を通じて、計算時間および解析精度に関して検討を加える。

* 原稿受付 2002年4月24日。
* 正員、京都大学大学院工学研究科環境地球工学専攻 (☎606-8501 京都市左京区吉田本町)。
* 正員、京都大学大学院工学研究科。
E-mail: ushijima@geo.kyoto-u.ac.jp
2. 予測段階における圧力勾配の評価位置

MAC系の解法の特徴は、予測段階、圧力計算段階、そして修正段階の3つに区分することができる。コロケート格子配置を用いる場合には、セル中心とセル境界における空間内挿が行われるため、各段階において、計算スキームの構成にいくつかの柔軟性がある。ここでは、予測段階における圧力の評価位置に着目する。

2.1 CCPスキュームとCBPスキューム

予測段階における圧力の扱いに関しては、離散化の高次精度化が検討されているが(11), (12)。圧力勾配の評価位置に着目すると次の2種類の方法がある。1) セル中心で圧力勾配を計算し、流速の推定値を求める方法。この方法を以下ではCCP(Cell Center Pressure)スキームと表記する。2) 圧力を含まれない推定値をセル境界に空間内挿し、セル境界で圧力勾配を評価する方法(5)。これをCBP(Cell Boundary Pressure)スキームと表す。3) スタグード格子のFractional Step法と同様に、予測段階では圧力を含まずに計算しない方法(13)。ただし、3) の方法は自由液面流れの計算で流体質量を精度良く保存させることができないため(14)。これではCCPおよびCBPスキームを考察の対象とする。

両スキームの本質的な特徴を把握するため、図1に示す1次元の等間隔コロケート格子を考える。

セル中心を基準として式(2)の空間的な離散化を行い、セル境界へ空間内挿すると次式が得られる。

\[u_{b,j}^* = \frac{u_{c,j+1}^n + u_{c,j-1}^n}{2} + \frac{CD_{j+1}^n + CD_j^n}{\Delta t} \cdot \frac{\Delta t}{2 \rho} \left(\frac{p_{c,j+1}^n - p_{c,j+1}^n + p_{c,j-1}^n - p_{c,j-1}^n}{2 \Delta x} \right) \]

(3)

下添字c,bは、それぞれセル中心およびセル境界で定義された変数を示す。式(3)のu_{b,j}^*が、CCPスキームで得られる流速の推定値である。

CBPスキームでは、式(2)の代わりに次式を用いる。

\[u^* = u^n + CD_n^\Delta t \]

(4)

これに対して、uを次のように定義する。

\[\hat{u} = u^n - \frac{\Delta t \partial p_n^n}{\rho \partial x} \]

(5)

式(4)をセル中心、式(5)をセル境界で離散化する。同様に代入計算を行うと、離散化式は次のようにになる。

\[\hat{u}_{b,j} = \frac{u_{c,j+1}^n + u_{c,j-1}^n}{2} + \frac{CD_{j+1}^n + CD_j^n}{\Delta t} \cdot \frac{\Delta t}{\rho} \frac{p_{c,j+1}^n - p_{c,j+1}^n + p_{c,j-1}^n - p_{c,j-1}^n}{2 \Delta x} \]

(6)

式(6)の\hat{u}_{b,j}が、CBPスキームにおける流速の推定値に相当する。式(3)と式(6)で示されるセル境界における流速の推定値を比較すると、CBPスキームでは近接する圧力からその勾配が計算されており、CCPスキームよりもコンパクトな構成となっている。

圧力計算段階では、予測段階で得られたセル境界上の流速の推定値u_{b,j}あるいは\hat{u}_{b,j}と連続性から導かれる\phi (= p_n^n - p^n)に関する連立方程式を解く。予測段階におけるp^nの扱いの相違により、圧力計算段階における基礎式が異なる。CCPスキームでは、\phiの連立方程式は次のようにになる。

\[\phi_{j+1} = -2\phi_j + \phi_{j-1} \]

\[\phi_{j+1} = -2\phi_j + \phi_{j-1} \]

\[\phi_{j+1} = \frac{\Delta x^2}{\Delta t} \frac{\Delta t}{\Delta x^2} \]

一方、CBPスキームでは次式となる。

\[\phi_{j+1} = -2\phi_j + \phi_{j-1} \]

\[\phi_{j+1} = \frac{\Delta x^2}{\Delta t} \frac{\Delta t}{\Delta x^2} \]

式(7)と式(8)の右辺第3項を比較すると、p^nの2階微分の離散化として、CCPスキームではセル幅
2△x。また CBP スキームではセル幅 2△x が中央差分が用いられていることがわかる。

2.2 CCP および CBP スキームの適用性

上記のように、CCP スキームでは圧力 p^n の 2 階微分値がセル幅 2△x の中央差分で評価されているので、格子分割における波長 2△x の圧力波動あるいは波面変動が生じたときに、これを正確に検出できない可能性がある。これを確認するため、波長 2△x の波面変動を初期値として与えた場合の計算を行う。計算にはコロネットグロス配置に基づく既報の手法を用いる。動粘性係数を 0.01 とすることにより、流体の粘性によって初期の波面変動が徐々に減衰する条件とする。

図 2 に初期状態 (t = 0.0) および t = 5.0 における波位 h を示す。同図中では、プロット点は△x/2 ごとに付されている。図 2 に示すように、CBP スキームによる計算では、初期条件として与えた液面変動は減衰して、t = 5.0 ではほぼ水平な液面形状となる。

一方、CCP スキームによる計算結果では、図 2 に示されるように、t = 5.0 では波面変動が増幅してしまう自然な結果となった。このように、CCP スキームでは波長 2△x の波面振動や圧力変動を適切に扱えない場合があるため、予測段階では CBP スキームを用いるのが適切であると考えられる。

![Fig. 2 Comparison of free surface profiles](image)

3. C-ISMAMC 法の概要

スタガード格子配置では、SMAC 法の予測段階における流速の推定値を陰的に計算する Implicit SMAC 法が提案されている。一方、コロネットグロス配置を用いる場合には、CBP スキームが適切であることが上記で示されたが、同スキームでは流速の推定値の算出に圧力勾配を用いないので、定常解においても推定値と流速値が完全には一致しない。このため、Implicit SMAC 法をそのまま利用することはできない。以下ではこの点に関する改良を行った C-ISMAMC 法の具体的な計算手順を示す。

基本方程式を直交座標系 x_i の流速成分とする場合、重力を考慮した Navier-Stokes 式と連続式は一般座標系 x_m 上でそれぞれ以下のようになる。

\[
\frac{\partial u_i}{\partial t} + U_m \frac{\partial u_i}{\partial x_m} = -g \delta_{ni} - \frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial}{\partial x_m} \left(\frac{\partial u_i}{\partial x_m} \right) \frac{\partial \xi_m}{\partial x_j} \partial_j x
\]

(9)

\[
\frac{\partial (J U_m)}{\partial x_m} = 0
\]

(10)

ここで、g は重力加速度で、x_2 軸は鉛直方向上向きあるものとする。U_m は流速の反変成分であり、\(\rho\) は動粘性係数、J は変換のヤコピアンである。

式 (9) の移流項と拡散項にパラメータ \(\alpha\) と \(\beta\) を用いた拡散則を適用し、時間方向に離散化する。CBP スキームによる流速の推定値 \(u_i^*\) は次式より得られる。

\[
u^* = u_i^n - \alpha U_m \frac{\partial u_i^n}{\partial x_m} \Delta t - (1 - \alpha) U_m \frac{\partial u_i^n}{\partial x_m} \Delta t
\]

\[g \delta_{ni} \Delta t - \beta \nu \frac{\partial}{\partial x_m} \left(\frac{\partial u_i^n}{\partial x_m} \right) \frac{\partial \xi_m}{\partial x_j} \partial_j x
\]

(11)

ここで、流速の推定値を次式のように残差成分 \(\tilde{u}_i\) を用いて表示する。

\[u_i^* = u_i^n + \tilde{u}_i
\]

(12)

C-ISMAMC 法では、残差成分の連立方程式を導く際に、一時的に圧力勾配を考慮する。すなわち、式 (12) を式 (11) に代入し、圧力勾配値を付加すると、次式が導かれる。

\[\left[1 + D(\alpha, \beta) \right] \tilde{u}_i = -D(1, 1) u_i^n - \delta_{ni} \Delta t - \frac{\partial}{\partial x_m} \left(\frac{\partial u_i^n}{\partial x_m} \right) \frac{\partial \xi_m}{\partial x_i} \partial_j x
\]

(13)

ここで、D(\alpha, \beta) は次式の微分算子である。

\[\frac{\partial}{\partial x_m} \left(\frac{\partial \xi_m}{\partial x_j} \right) \frac{\partial \xi_m}{\partial x_j}
\]

(14)

式 (13) には圧力項が含まれるので、定常解では残差成分 \(\tilde{u}_i\) は十分小さい値となる。このため、式 (13) 左辺に含まれる流速項と拡散項にはそれぞれ低次の 1 次風上差分と中央差分を用い、右辺の流速項に高次精度
スキームを適用すると、式 (13) は次のような $u*$ の連立 1 次方程式に帰着する。

$$
\sum_{p,q=1,0,1} a_{j+p,k+q} u_{s,j+p,k+q}^* = -U_{m,j,k}^n C_{m,j,k}^{n+1} + D F_{r,j,k}^{n+1}
$$

(15)

ここで、(j,k) は 2 次元空間における格子点を示し、$a_{j+p,k+q}$ はステップの流量と座標変換に関するテンソル量から得られる係数である。式(15)の右辺には 5 次精度の QSI スキームを用いており、$C_{m,j,k}^{n+1}$ は、写像空間中において、格子点 (j,k) に対して ξ_m 方向に並ぶ 6 個の格子点上の $u_{s,j}^*$ を 5 次スプライン関数で表現したときの 1 次の項の係数である。また、式(15)右辺の $DF_{r,j,k}^{n+1}$ は拡散項であり、ここでは左辺と同様の中央差分を用いた。式(15)を解いて得られた u^* を式(12)に用いて、セル中心における流量の推定値 u_{s}^* が求められる。

次に、C-ISMAC 法では、以下のように u^* から圧力項を取り除く。

$$
u^* = u^* + \frac{\Delta t}{\rho} g^{m,j} \frac{\partial p_0}{\partial \xi_m}
$$

(16)

この操作により、u^* は CBP スキームで利用されるものと同等の圧力を含まない流量の推定値となる。この u^* をセル境界へ空間内挿し、そこで再び圧力を考慮した種皮流を求めると、自由液面流れの場合、n ステップの液位 h^n から計算される静水圧 p_0 を用いて次式より推定値 $U_{b,m}$ が得られる。

$$
U_{b,m} = U_{b,m}^* - \frac{\Delta t}{\rho} g^{m,j} \frac{\partial p_0}{\partial \xi_m}
$$

(17)

ここで、$U_{b,m}^*$ はセル境界における流量の推定値の反変成分、$U_{b,m}$ はセル境界に空間内挿された u^* の反変成分である。$g^{m,j}$ は基本テンソルの反変成分である。これに対して、$n+1$ ステップで成り立つべき式は次のように与えられる。

$$
U_{b,m}^{n+1} = U_{b,m}^{n+1} - \frac{\Delta t}{\rho} g^{m,j} \frac{\partial p^{n+1}}{\partial \xi_j}
$$

(18)

式(15)と式(18)の差を取り、連続性を用いると次式が得られる。

$$
\frac{\partial}{\partial \xi_m} \left(J g^{m,j} \frac{\partial \phi}{\partial \xi_j} \right) = \frac{\partial}{\partial \xi_m} \left(J U_{s,m}^* \right)
$$

(19)

自由液面流れでは、流れ場を精度良く保存させることが重要であるので、式(18)と式(19)を利用して C-HSMAC 法により圧力と流速を同時緩和することが有効である。得られた ϕ を用いて $p^{n+1} = p_0 + \phi$ より p^{n+1} を定める。また、C-HSMAC 法で求められた自由液面上の流速の反変成分 U_{s}^{n+1} と推定値を、次式より $n+1$ ステップの液位を求める。

$$
U_{s}^{n+1} = h^n + \frac{J U_{s}^{n+1} \Delta \xi_j}{\Delta t}
$$

(20)

セル中心の u_{s}^{n+1} は、u_{s}^* を用いて次式より求められる。

$$
u_{s}^{n+1} = u_{s}^* - \frac{\partial}{\partial \xi_m} \frac{\partial u_{s}^*}{\partial \xi_m}
$$

(21)

4. 計算結果と考察

4.1 キャビティ流れ

C-ISMAC 法の通用性を確認するため、移動壁を有するキャビティ内の流れの計算を行う。セル数 25×25 の不等間隔格子を用い、Re数 1,000 の流れを対象とする。開解法に基づく同条件の計算（以下標準計算、図表中では explicit）と計算時間および精度を比較する。標準計算の時間ステップを基準として、その間の流速の変化の最大値が $e_U = 1.0 \times 10^{-5}$ となった時点の結果を定常解とする。また、$a = \beta = 1.0$ とした。

C-ISMAC 法を用いる場合、$\Delta t = 1.0 \times 10^{-1}$ としても安定な計算が可能であったが、標準条件では $\Delta t = 2.5 \times 10^{-3}$ すると計算が不安定となった。表1 に標準計算と C-ISMAC 法を用いたときの計算時間を T_n を示す。計算時間 T_n は標準計算の値を基準として正規化したものである。その逆数は計算速度の向上比に相当する。また、表1の C_m と D_m は、それぞれ定常解における計算領域内のクーラン数と拡散数の最大値である。

| Table 1 Comparison of computational time and other parameters |
|---------------------------------|---------------|----------------|---------------|
| Δt | T_n | $1/T_n$ | C_m | D_m |
| explicit | 1.0×10^{-2} | 1.00 | 0.37 | 0.05 |
| C-ISMAC | 2.5×10^{-3} | 0.95 | 0.94 | 0.13 |
| C-ISMAC | 5.0×10^{-3} | 0.54 | 1.85 | 0.90 |
| C-ISMAC | 1.0×10^{-1} | 0.32 | 3.15 | 3.74 |

C-ISMAC法では、表1に示すように CFL条件を越えて Δt を大きく取ることができ、結果的に計算時間を短縮化することが可能となっている。ただし、Δt を増加させると収束速度が低下するため、Δt の増加に比例した計算間の短縮化は見られない。また、u_{s} の値は定常解の判定値と同程度の値となるが、e_U を小さく設定することにより、u_{s} をさらに0に近づけることができた。このように、残差成分の連立方程式を導く際にセル中心で一旦圧力を考慮したことで、u_{s} は十分小さい値に収束することが確認された。

上記の計算で得られた流速分布を図3に示す。Δtを標準計算の10倍の値としても、標準計算と比較し
た場合の流速分布の相違はわずかであり、移流項に用いられたQSIスキームの精度を損なうことはない。

C-ISMAC法では\(\Delta t/T_0 \)を2.5×10^{-3}としても安定な計算が可能であった。このときの計算時間は、標準計算の約14%であり、計算速度は約7倍となっている。図5にこの計算条件で得られた\(t/T_0 = 3.0 \)における流速ベクトルの分布を示す。

Table. 2 Comparison of computational time and other parameters

<table>
<thead>
<tr>
<th></th>
<th>(\Delta t/T_0)</th>
<th>(1/T_0)</th>
<th>(C_{nm})</th>
<th>(D_{nm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>explicit</td>
<td>2.5×10^{-4}</td>
<td>1.00</td>
<td>0.25</td>
<td>0.17</td>
</tr>
<tr>
<td>C-ISMAC</td>
<td>5.0×10^{-4}</td>
<td>1.00</td>
<td>0.54</td>
<td>1.86</td>
</tr>
<tr>
<td>C-ISMAC</td>
<td>1.25×10^{-3}</td>
<td>0.26</td>
<td>0.78</td>
<td>3.78</td>
</tr>
<tr>
<td>C-ISMAC</td>
<td>2.5×10^{-3}</td>
<td>0.14</td>
<td>7.13</td>
<td>2.45</td>
</tr>
</tbody>
</table>

\(t/T_0 = 3.0 \)における容器内の流速分布を図6と図7に示す。水平および鉛直方向流速の分布に関しては、図6, 7に示されるように、C-ISMAC法の計算結果は標準計算の結果とほぼ一致した。

4.2 流出のある自由液面流れ

流出のある容器内において、自由液面を有する流れ場の計算にC-ISMAC法を適用する。流入流速は時間\(T_0 \)内に0から一定の値\(u_0 \)まで線形に増加して、最終的に一定となる流れを対象とする。容器の形状を図4に示す。直交座標系の原点は容器の左下隅にとり、\(x, y \)方向の流速成分をそれぞれ\(u, v \)とする。初期液位\(H \)および\(B \)を0.1m、\(L \)を0.01mとし、動粘性係数は1.0×10^{-3} m²/s、密度は1.0×10^{3} kg/m³、重力加速度は10.0 m/s²とした。流入流速\(u_0 \)は1.0 m/sとし、\(T_0 \)は2秒とした。また、壁面では摩擦が作用しないものとする。計算は、流況がほぼ一定となる\(t/T_0 = 3.0 \)まで行った。

Fig. 3 Velocity distributions (○, ■ = Ghia

Fig. 4 Geometry and conditions for free-surface flow

表2に標準計算とC-ISMAC法に要した計算時間、そして関連するパラメータを示す。標準計算では、\(\Delta t/T_0 \)を5.0×10^{-4}とすると計算が不安定となった。一方、
自由液面流れに対するコロケート格子を用いた陰的計算法（C-ISMAC 法）の適用性

Fig. 7 Distributions of v ($y/H = 0.5$, $t/T_0 = 3.0$)

次に、図 8 は $t/T_0 = 3.0$ における液面形状を比較したものですので。$\Delta t/T_0$ を 2.5×10^{-3} としたときに

最大および最小液位の差がやや過小に評価されているが、これより Δt を小さくした場合には標準計算の液面形とよく一致する計算結果が得られている。

Fig. 8 Free-surface profiles ($t/T_0 = 3.0$)

本節の自由液面流れでは、流入流速が増加するとともに内部流れが変化し、液面振動や非定常的な液面変形が生じた後、最終的に定常な液面形が得られる。定常流れ場を想定した上記の過程を確認するため、容器左右両端と中央における液位 h の時系列を比較した。その結果を図 9 に示す。容器左右両端における液位の変化は C-ISMAC 法によるいずれの計算でも標準計算の結果とほぼ一致しているが、Δt を増加させると、容器中央と右端の液位差が若干過小に評価される傾向が見られる。しかし、Δt が小さい場合には、液面の振動や過渡的な変化はほぼ良好に再現されている。これらの結果から、本節の計算条件では、標準計算の 2～3 倍の計算速度で標準計算と同等の精度を有する計算結果が得られると考えられる。

Fig. 9 Time-histories of h

5. おわりに

コロケート格子上で、高次精度のスキームの扱いが容易な陰的解法に基づく流体計算法を得ることを目的として、同格子における MAC 系解法の予測段階における圧力勾配の評価位置に考察を加え、この結果を考慮した C-ISMAC 法を示した。

最初に、予測段階における p^u の評価方法が異なる CCP スキームと CBP スキームを示し、圧力計算段階で扱われる ϕ の基礎式の相違を明かにした。さらに、CCP スキームでは、波長 $2\Delta x$ の液面振動あるいは圧力変動を捕えることが困難であることを示した。次に、この結果を考慮して、CBP スキームに対して Implicit SMAC 法を適用する解法である、C-ISMAC 法を提案した。C-ISMAC 法では、セル境界で一様圧力を含めて残差成分の連立方程式を導き、得られた流速の推定値から圧力を除去して CCP スキームと同等の推定値を得る。離散化の際には、残差成分のみを陰的に扱い、これに低次のスキームを用いる一方、定常解に収束する成分は陽的に扱うので、高次精度スキームを適用する。得られた推定値から圧力を除去し、セル境界へ空間内挿した後にそこで再び圧力勾配を計算する。

C-ISMAC 法の有効性を確認するため、キャピティ・フレークと自由液面流れの計算を行った。その結果、計算時間を短縮できることができ、同じく QSI スキームを用いた MAC 系解法と同等の精度を有する計算が可能であることが示された。提案された C-ISMAC 法は定常流れあるいは時間的な変化が緩やかな非定常流れの計算においては、有効な手法と考えられる。

文献

— 29 —
自由表面流れに対するコロケート格子を用いた陰的計算法（C-ISMAC 法）の適用性

