Hydrogen Production from Ethanol by Steam Reforming with Cu/ZnO/Al₂O₃

Katsuya HIRATA*4, Yuichi SONO, Yuki OKUHIGASHI, Toshio SHINOKI and Jiro FUNAKI

*4 Department of Mechanical Engineering, Doshisha University, Kyoto, 610-0321 Japan

In the present study, we reveal the dominant chemical reactions and the optimum conditions, supposing the design of ethanol steam-reforming reactors. Experiments are conducted for Cu/ZnO/Al₂O₃ catalyst. Using a household-use-scale reactor with well-controlled temperature distributions, we specify the effect of liquid-hourly space velocity LHSV upon the ethanol conversion Xₐₕₔ孵 in the range of LHSV from 0.05 to 1.40 h⁻¹ at steam-to-carbon ratio S/C = 3.0 and reaction temperature T = 420, 470, 520 K, and the effect of LHSV upon concentrations such as CH₄, CO, CO₂ and H₂O at T = 470 K. Furthermore, we compare experimental results with chemical-equilibrium theories. As a result, the Cu/ZnO/Al₂O₃ catalyst shows rather high performance at low values of T for the ethanol steam reforming, from a viewpoint concerning Xₐₕₔ孵. Furthermore, the obtained concentrations suggest that the dominant chemical reactions at LHSV < 0.2 h⁻¹ are different from those at LHSV ≥ 0.2 h⁻¹.

Key Words: Steam Reforming, Fuel Cell, Ethanol, Hydrogen, Biomass

1. 論文
現在、化石燃料の大量消費に対する環境関係は、NOₓやSOₓなどによる大気汚染防止から、地球温暖化防止に向けたCO₂排出削減への、広がりを見せている。この背景のもとで、エネルギー源として、水素燃料が注目を集めている。水素は、更に、エネルギー源として、最近、注目されている、水素を生成する方法として、触媒を用いて水蒸気改質反応をさせる方法が一般的である。水素製造のための浄化水素にはなどで、エタノール、エタノール、天然ガス、ガソリン、メタン、ジメチルエーテル、プロピレングリコール、軽油、軽油など、さまざまなものが存在する。その中で、エタノールは、地球温暖化問題の観点からも有効である(1)。

エタノール改質反応は、用いる触媒により異なるが、423-1273K程度の温度範囲で行われる(2)。もちろん、熱効率などの観点からは、より低い反応温度で効率的に改質することが望まれる。エタノール改質に関しての過去の研究としては、改質触媒自体の化学的研究および理想状態での理論シミュレーションによる解析が主で、実験については改質器内径 4-10mm 程度の小規模なもののみである(3)。しかし、実用改質器設計では、水素燃料燃焼換算で数 kW 以上のものが一般的である。その際に必要となる実機スケールの改質器である、さらにはオーガー程度大きな大きさを有する改質器については、詳細に調べられていらない。この様な実用的長さを有する改質器では、温度調節などの様々な策が検討されていない。

そこで、著者らは、前報(3)に引き続き、設計規模標準の為の基礎研究を実施する。すなわち、前報と同様に、実用的長さを有する改質器を用い、エタノール改質実験を行い、効率の観点のための様々な温度条件を調える。改質触媒としては、Cu/ZnO/Al₂O₃触媒を扱う。また、基盤的所見を得る為、今回はまず、触媒層内の温度分布はほぼ均一になるように管理する。すなわち、様々な温度上昇速度と反応温度 T に関して、ガス・クロマトグラフによる各組成の濃度とエタノール分子を明らかにする。

2. 実験方法
2.1 実験装置 実験装置は、前報(3)とほぼ同様である。その詳細については文献(3)を参照されたい。使用した触媒は、Cu/ZnO/Al₂O₃(SUD-CHEMIIE 社 MDC-3)である。
なお、改質器内の温度計測、ガス・クロマトグラフによる各成分の濃度分析方法、触媒の前処理についても、その詳細は前報と同様である。

ある程度の大きさを有する改質器内部での改質反応には、特に温度管理が重要であるので、細かい温度計測を実施し、改質器温度分布を明らかにした。触媒層内の温度分布は、燃料投入前後ではほぼ同様であり、かつ、ほぼフラットであり、望ましい温度環境の実現に成功している。（実機では避けられない温度勾配による温度不均一の諸特性への影響の解明は、今後の課題である。）

2.2 改質反応式

エタノール（C₂H₅OH）をスチーム（H₂O）と反応させ、水素（H₂）を製造する。この水蒸気改質反応は、理論的には次式となる。

\[C₂H₅OH + 3H₂O = 6H₂ + 2CO₂ - 174kJ/mol. \] (1)

しかし、実際には多くの化学反応が同時に起こる。以下は主なものである。

\[C₂H₅OH + H₂O \leftrightarrow CH₄ + CO₂ + H₂ (51.3kJ/mol). \] (2)
\[CO + H₂O \leftrightarrow CO₂ + H₂ (41.2kJ/mol). \] (3)
\[CO + 2H₂ \leftrightarrow CH₃OH + 205kJ/mol. \] (4)

ここで、式(2)を、エタノール水蒸気改質反応と呼ぶ。

式(3)はCOシフト反応、式(4)はメタネーション反応である。

式(2)と(3)または式(2)(4)の化学平衡を求める方法によって、理論的な改質ガス組成を算出できる（文献7参照）。

2.3 転化率X

エタノールの転化率を、Xₐchₙohと定義する。転化率とは、投入したエタノールが改質器内でどれだけ分解したかを表す指標である。一般の的には、投入したエタノールのモル量[Fch₂h₅oh]ₐに、改質器出口より出てきたエタノール量[Fch₂hₙoh]ₐを用いて、式(5)で計算する。しかし実験では、改質器出口のエタノール流量の決定が困難ため、投入した炭素Cのモル流量と改質ガス中に含まれる炭素Cを含む成分（CO、CO₂、CH₄）の合計流量を求め、式(6)によりCの収支を算出する。なお、Fch₂h₅ohはエタノールの流量[mol/min]を表す。Fco、Fco₂、Fch₄はそれぞれ、炭素Cを含む生成物（CO、CO₂、CH₄）の流量[mol/min]を表す。

\[Xₐchₙoh = \frac{Fch₂hₙohₐ}{Fch₂h₅ohₐ} \times 100\%. \] (5)

\[Xₐchₙoh = \frac{Fco + Fco₂ + Fch₄}{2Fch₂h₅oh} \times 100\%. \] (6)

3.結果と考察

3.1 LHSVのXへの影響

図1に、スチーム・カーボン比SC = 3、反応温度Tₐₙ₉₀ = 420K、470K、520Kのときの、エタノール転化率Xₐch₂h₅ohへの液相空隙速度LHSVの影響を示す。同図には、比較のために、同じ条件 (Tₐₙ₉₀ = 520K、SC = 3) のメタノールについて行った水蒸気改質実験の結果Xₐch₂h₉₀も示す。最初に、LHSV = 0.20 h⁻¹で、Xₐch₂h₅ohへのTₐₙ₉₀の影響を見る。Tₐₙ₉₀ = 420Kでは、Xₐch₂h₅ohはほぼ0となる。一方、Tₐₙ₉₀ ≥ 470Kでは、Xₐch₂h₅ohは90%を超える。次に、Tₐₙ₉₀ = 520Kの結果に注目して、Xₐch₂h₅ohへのLHSVの影響を見る。LHSVをゼロから増した時、Xₐch₂h₅ohは約100%から徐々に減少する傾向を示す。また、LHSV ≤ 1.0h⁻¹では、Xₐch₂h₅ohはほぼ90%を超える。尚、特に大気LHSV (≥ 1.2h⁻¹) では、Xₐch₂h₅ohは急激に低下する。この特徴は、Tₐₙ₉₀ = 470Kでも、全く同様である。この原因として、LHSV ≥ 1.2h⁻¹での、不充分な投入流体の気化が考えられ、より完全な気化を実現することにより、更に高いLHSVまで高Xₐch₂h₅ohを維持することが可能となると思われる。これらの結果をまとめると、CuZnO/Al₂O₃触媒を用いたエタノールの水蒸気改質は、Tₐₙ₉₀ ≥ 470Kで転化率が高い。水蒸気改質器の小型化と効率化を考える場合、その限界 (Tₐₙ₉₀ = 470K) 近くで運転することが望ましい。LHSVの上限については、今後の更なる研究が望まれる。

ちなみに、メタノールについて見ると、エタノールと同様、LHSVをゼロから増した時、Xₐch₂h₉₀は約100%から徐々に減少傾向が見られるが、
以上の結果から、CuZnO/Al₂O₃触媒は、メタノール改質に適していることが確認できるが、転化率の観点からも、エタノールを充分改質できることができる。

3.2 LHSVのC₀₀, C₀₂, C₀₂, C₀₂Hへの影響
転化率は、巨視的な改質効率の把握に適した指標である。次に、我々は、転化率の代わりに、より微視的指標である各成分濃度を考える。

図2は、生成された各成分の濃度C₁₆, C₂₀₂, C₀₂, C₀₂HへのLHSVの影響を示す。ここでは、スチーム・カーボン比S/C=3, 反応温度T₉₅₀=470Kで固定している。また点線は、式(2)-(3)を用いて計算した化学平衡理論による各成分濃度を示す。補足すると、著者らは、ガス・クロマトグラフによる測定結果を、式(2)と(3)を用いた計算結果を式(2)-(4)を用いた計算結果と比較したの。その結果、実験値と式(2)と(3)を用いた計算値とは良い一致を示す。一方、式(2)-(4)を用いた計算値と実験値の間には、かなり大きな差異が生じる。すなわち、CuZnO/Al₂O₃触媒は、低い反応温度でかなり高い改質性能を示す。このことは、CuZnO/Al₂O₃触媒が、エタノール水蒸気改質CO₂シフト反応の促進を促進し、メタノール変換を促進しないことを示唆する。

まず、C₁₆に注目すると、C₁₆は、LHSVによらず、ほぼ一定値(約50%)をとる。その値は、化学平衡理論を、ほぼ一致させる。反応では、C₀₂に最も減少する。

次に、C₀₂に注目すると、C₀₂とよく似た傾向を示すことがわかる。すなわち、C₀₂Hも、LHSVによらず、ほぼ一定値(約25%)をとる。この値は、化学平衡理論と、ほぼ一致する。

C₀₂に注目すると、LHSV＜0.2h⁻¹で、C₀₂は、LHSVによらず、ほぼ一定値(約25%)をとる。この値は、化学平衡理論とも、ほぼ一致する。しかし、LHSV＞0.2h⁻¹で、C₀₂はLHSVの増加に伴って減少を始め、約0%へと漸近する。

最後に、C₀₂に注目すると、C₀₂は、C₀₂と対照的傾向を示す。すなわち、LHSV＜0.2h⁻¹で、C₀₂はLHSVによらず、ほぼ一定値(約90%)をとる。この値は、化学平衡理論とも、ほぼ一致する。しかし、LHSV＞0.2h⁻¹で、C₀₂は、LHSVの増加に伴って、増加を始め、約25%へと漸近する。

以上をまとめると、転化率に注目すると、LHSVが著しく大きくなれば、望ましい水蒸気改質が達成できる。微視的指標である各成分濃度をみても、C₀₂は常に50%程度であり、転化率の結果とも合わせて、水素製造効率は十分高いとみなせる。

更に、詳細に分析すると、C₁₆に加えて、C₀₂やC₀₂Hの値を考慮すると、LHSV＜0.2h⁻¹での化学反応は、LHSV＞0.2h⁻¹での反応とは異なることがある。すなわち、LHSVが大きくなると、燃料に対する触媒の量が少なくなる。この時、CO₂シフト反応(式(3))が促進されにくくなり、C₀₂Hが増加すると考えられる。

水素の製造効率の視点からは、LHSV＜0.2h⁻¹でも、LHSV=0.2-1.0h⁻¹で(LHSVの上限については今後の検討が望まれる)、C₁₆は、约50%かつX₀₂Hの約100%であるので、差異がなさそうに見える。しかし、詳細に各成分濃度をみると、後者のLHSV領域での改質の方が、はるかに大きいC₀₂を示し、もしCO₂除去を低減したいにきは、前者のLHSV領域の上限値近くに、若干、実用上の利点がある。

参考文献