不規則外乱を受ける非線形構造系の動的信頼性解析

持尾 隆士
Takashi MOCHIO

Key Words: Vibration, Seismic Design, Duffing’s Equation, Cumulative Fatigue Damage, Fatigue Life, First-Excursion Failure, Fokker-Planck Equation

1. まえがき

重工業界の製品の中には不規則外乱を受ける現象を
取扱われなければならないものが多い。たとえば構造物の耐
震・波動による船舶運動、突風による航空機や煙突の
耐風問題等である。これらの現象における不規則外乱は
いずれも再現性が無く時間的に変動する不確定性で
あるため、本来解析は確率統計論的取扱いとなるが、
外乱が非定常性を有したり系が非線形である場合には
特に解析困難となる場合が多く、このため解析が比較
的容易である定常線形系に近似して評価検討する場合
が多い。しかしこの様な近似化が応答を精度高めにお
いて過大評価となることもあれば過小評価となる場
合もある。

一方、構造解析の終局目標である安全性の評価に関し
て、従来の決定論的評価法は理論と経験の妥協から生
まれた安全率なる概念の中にすべての不確定要因を持
ち込んでいるため、構造物の信頼性に対する正確な評
価が不可能であった。これを利用しての動的信頼性
工学と呼ばれる確率論的なアプローチを基礎としてした評
価手法が近来活発になり始めているが、その範囲は
比較的解析が楽である定常入力線形系に限定されること
が多い。しかし現実の問題としては本来非定常や非線
形として取扱わざるを得ない、あるいは精度を高く
評価できないものも多い。そのようなランダム非線形
振動問題に対して最近では等価線形化手法を用いた研
究[7, 8, 9] 池田らの研究[10, 11]、あるいはFokker-Planck
方程式を利用した研究[12, 13]等、種々報告されているが解析対象を限定したものが多く、広く一般的な
ランダム非線形振動問題に適用できる範囲的な解析手
法はまだ確立されていない。

本論文はこのような解析現状下にあってできるだけ広
範囲のランダム非線形振動に対し、その応答の推
定、さらに動的信頼性の評価を統一的かつ精度良く行
うことを主眼に考察した。一解析手法について述べた
ものである。本論文ではFokker-Planck方程式を基礎に
置いているが、応答の非定常性と非線形の発現度
の観点からは工夫を凝らし、必要に応じて
取扱いを向上させることが有る様になっている。
また本解析手法の具体的適用例として地震時における
非線形系の動的振動問題を取り上げ、これらの応答評
価、及び疲労、破壊時における動的信頼性評価につい
て述べている。

2. 理論解析

ランダム非線形振動問題には種々あるが、ここで
はFokker-Planck方程式を用いる。それでは本手法が確
率微分方程式を介して力学系の統計量を推定するため
疲労評価等に必要となる確率密度の情報を持ち込
んでいる。このことは応答量及び動的信頼性の評価を
統一した思想の下で行おうとする場合、非常に都合が
良いためである。

2.1 非定常分分散の推定 一般に非線形-自由
系の運動方程式は次のように表される。

\[f(x, t) = w(t) \]

(1)

式(1)を \[x = X_1, \dot{x} = X_2 \] として拡張変数表示すると、

\[X_1 = x_1 \]
\[X_2 = \dot{x} \]

(2)

となるので式(2)において \(w(t) \) を確率過程と考えれば式(2)は \((X_1, X_2) \) を状態確率変数とする確率微分
方程式となる。

式(2)における非定常確率過程 \(w(t) \) を次の様に仮
定する。

\[w(t) = \sigma(t) \Omega(t) \]

(3)

ここで \(\Omega(t) \) の時間とともにゆっくり変化する確定
関数であり \(\Omega(t) \) は次の特性を有する正規性ホワイト
ノイズとする。
不規則外乱を受ける非線形構造系の動的信頼性解析

\[E[u(t)]=0 \]
\[E[n(t)n(t+\tau)]=2\pi \sum \delta(\tau) \] \hspace{1cm} \text{(4)}

\[\delta(\tau) \text{: デルタ関数} \]

この時時態確率変数 \(X=(X_1, X_2)^T \) はマルコフプロセスであると仮定したときの移動確率密度 \(q(x_1|X^T, t, i, X_t) \) は次のポッカー・プランク方程式を満たす。

\[\frac{\partial x_i}{\partial t} = -\frac{\partial}{\partial x_i} [f(x_1, X_t)] + \frac{1}{2} \sum \sum \frac{\partial^2}{\partial x_i \partial x_j} [g(x_1, X_t)] \] \hspace{1cm} \text{(5)}

\[x_i(X^T, t) = \lim_{h \to 0} \frac{E[(X_{i+1} - X_i)(X_{i} - X_i)]}{\Delta t} \]

式(5)において \(x_i, x_0 \) はそれぞれ状態確率変数の一次及び二次の微分モーメントであり、具体的には式(2)〜(4)より次のようになる。

\[x_1 = X_1 \]
\[x_2 = -f(X_1, X_2) \]
\[x_3 = 2\pi \sum \delta e(t) \]

式(6)を式(5)に代入し、さらに初期条件が確率 1 であるという場合、確率密度関数 \(P(x_i|X^T, t) \) は次式を満たす。

\[\frac{\partial^2}{\partial x_i^2} [f(x_1, X_t)] \]

\[+ \frac{\partial^2}{\partial x_i^2} [g(x_1, X_t)] \] \hspace{1cm} \text{(7)}

式(7)を利用して応答の変位及び速度に関するモーメント方程式を容易に導出することができる。すなわち今とモーメントまで求めようすれば \(X_1, X_2 \) に関する \(n \) 次までのすべての組合せに従って式(7)の両辺に乗じ、\(X_1, X_2 \) に関して積分する。右辺については部分積分操作を繰返せば最終的には次のモーメント方程式が得られる。

\[\frac{\partial M}{\partial t} = \{ E[X_1], E[X_1 X_1], E[X_1 X_2], \ldots, E[X_1 X_2] \} \]

\[M = \{ E[X_1 X_1], \ldots, \} \]

\[\{ g_i(t; E[X_1], \ldots, E[X_1]) \} \]

\[G = \{ g_i(t; E[X_1], \ldots, E[X_1]) \} \]

\[l = \sum_{k=1}^{n} (k+1) \]

\[i+j=2, \ldots, k, \ldots, n \]

\[(i+j=k \text{の時；} i, j=0, \ldots, k) \] \hspace{1cm} \text{(8)}

式(8)の導出までは比較的容易であるが、系が線形の場合は式(8)は一般に閉じた方程式群とはならず式中に発生する高次モーメントの処理が問題となる。この解決法は後述することとして、最初に式(7), (8)等が線形、非線形にかかわらず共通適用できることを簡単述すために、二次モーメントまで考慮した場合のいくつかの例について述べる。

(i) 系が線形系の場合

\[\ddot{x} + a_1 \dot{x} + a_2 x = w(t) \] \hspace{1cm} \text{(9)}

\[f(X_1, X_2) = a_1 X_1 + a_2 X_2 \] \hspace{1cm} \text{(10)}

故に式(10)を式(8)に代入することによりモーメント方程式が得られる。

\[\frac{\partial}{\partial t} E[X_1] = 2E[X_1 X_1] \]

\[\frac{\partial}{\partial t} E[X_1 X_1] = E[X_1] - a_1 E[X_1] \]

\[-a_2 E[X_1] \]

\[+2\pi \sum \delta e(t) \] \hspace{1cm} \text{(11)}

式(11)は閉じた方程式群を構成しており初期条件を設定すれば数値的に容易に解を求めることができる。

(ii) ばねに非線形性を有する系

代表例として Dufling 方程式を考える。

\[\ddot{x} + a_1 \dot{x} + a_2 (x + \dot{x}) = w(t) \] \hspace{1cm} \text{(12)}

\[f(X_1, X_2) = a_1 X_1 + a_2 (X_1 + \dot{x} X_2) \] \hspace{1cm} \text{(13)}

式(13)を式(8)に代入して

\[\frac{\partial}{\partial t} E[X_1] = 2E[X_1 X_1] \]

\[\frac{\partial}{\partial t} E[X_1 X_1] = E[X_1] - a_1 E[X_1, X_2] \]

\[-a_2 E[X_1] \]

\[+2\pi \sum \delta e(t) \] \hspace{1cm} \text{(14)}

が得られるが式(14)には高次モーメント \(E[X_1 X_1] \)

\[E[X_1 X_1] \] を含むため閉じた方程式群たるみこのままでは解が得られず、

(iii) 減衰に非線形性を有する系

\[\ddot{x} + a_1 (\ddot{x} + \dot{x}^2) + a_2 x = w(t) \] \hspace{1cm} \text{(15)}

\[f(X_1, X_2) = a_1 (X_1 + \ddot{x}) + a_2 X_1 \] \hspace{1cm} \text{(16)}

式(16)を式(8)に代入すると
\[
\frac{\partial}{\partial t} E[X(t)] = 2E[X(t)] - a_1 E[X(t)] - a_2 E[X(t)]
\]

\[
\frac{\partial}{\partial t} E[X_i(t)] = E[X_i(t)] - a_i E[X(t)] - a_2 E[X(t)]
\]

\[
2a_1 E[X(t)] + 2\pi \sum_i (e(t))^2
\]

となるが、この場合には \(E[X(t)] = E[X_i(t)]\) なる高次モーメントを含むため式(17)のみでは解が得られない。

上記の例からも明らかなように非線形系の解析を行う場合にはモーメント方程式に2高次モーメントが現れることが多く、この取り扱いが問題となる。これに関
して Kaul-Penzien(11)はモーメント方程式を踏まえた 1-2-1-2を求めるためのFokker-Planck方程式の段階において式(17)に現れる非線形項を零と線形化手法により線形化し
て高次モーメントが発生しない様工夫している。一方モーメント方程式の段階での近似化をしようとする場合、Fokker-Planck 法に限った手法ではないがしばしば
高次モーメント打ち切り手法に近似手法が使われる。本手法は方程式の形に依存することなく簡便性がありまた求解精度も必要に応じて選択できるためこの手法を利
用した解析は現在まで様々な研究が行われている(7)(8)。本論文においてもできるだけ簡便性のある解析手法の開発に主眼を置いているため、高次モーメント打ち切り手法
を Fokker-Planck 法に適用する。

高次モーメント打ち切り手法はいくつかあるが、精度の面から主に中心モーメント打ち切りとキュラント打ち切りの二種類に分けられる。しかし中心モーメント打ち切り法においては応答の一高次モーメントが
零の場合には高次モーメント自身が零となり、近似精度が低下するため、ここではキュラント打ち切り法を採用する。次にその概要を述べる。

式(17)の元の式に対する特異性関数は、

\[
M_{\theta_1, \theta_2, \ldots, \theta_n(\theta_1, \ldots, \theta_n)} = E[exp(i(\theta_1 X_1 + \ldots + \theta_n X_n))]
\]

\[
	imes P(x_1, \ldots, x_n) dx_1 \ldots dx_n
\]

でありこの時の \((m_1 + \ldots + m_n)\) 次のキュラントは次のように表される。

\[
\mu_1, \ldots, m_n [X_1, \ldots, X_n] = \frac{1}{m_1 \ldots m_n}
\]

\[
	imes \left(\frac{\partial m_1 \ldots m_n}{\partial \theta_1 \ldots \partial \theta_n} \ln M_{\theta_1, \ldots, \theta_n} \right)_{\theta_1, \ldots, \theta_n = 0}
\]

式(19)よりキュラントは対数特性関数の展開時に

における係数を直ちにとることができ、この高次モーメントの発生が知ることにより高次モーメントを低次モーメントで近似しようとするのがキュラント
打ち切り法である。具体的に示すために式(14), (17)
で現れる四次モーメントの近似化について述べる。

まず四次のキュラントを以下に示す。

\[
\mu_1 [X(t)] = E[X(t)]
\]

\[
\mu_2 [X_i(t)] = E[X_i(t)] - E[X(t)]
\]

\[
\mu_3 [X_i(t)] = E[X_i(t)] - 3E[X(t)]
\]

\[
\mu_4 [X_i(t)] = \frac{1}{2} \left(E[X_i(t)] + 3E[X(t)] \right) - \frac{1}{4} \sum_i (e(t))^2
\]

ここで四次のキュラントを零とすれば次の様なモーメントに関する関係式が得られる。

\[
E[(X_i - \mu_1)(X_i - \mu_1)(X_i - \mu_1)(X_i - \mu_1)]
\]

\[
= E[(X_i - \mu_1)(X_i - \mu_1)]E[(X_i - \mu_1)]
\]

\[
	imes E[(X_i - \mu_1)] + E[(X_i - \mu_1)]E[(X_i - \mu_1)]
\]

\[
	imes E[(X_i - \mu_1)]
\]

\[
\mu_4 [X_i(t)] = 3E[X(t)]E[X_i(t)] - E[X_i(t)]
\]

\[
\mu_5 [X_i(t)] = \frac{1}{2} \left(E[X_i(t)] + 3E[X(t)] \right)
\]

\[
\mu_6 [X_i(t)] = \frac{1}{2} \left(E[X_i(t)] + 3E[X(t)] \right)
\]

\[
\mu_7 [X_i(t)] = \frac{1}{2} \left(E[X_i(t)] + 3E[X(t)] \right)
\]

\[
\mu_8 [X_i(t)] = \frac{1}{2} \left(E[X_i(t)] + 3E[X(t)] \right)
\]

(24) 式(24)を用いることによりすべての四次モーメントを

低次モーメントで近似することが可能となるので、

平均値が零であることを考慮して式(14), (17)に現れ
る四次モーメントを近似化すれば、

\[
E[X(t)] = E[X_i(t)]
\]

\[
E[X_i(t)] = E[X_1(t)]
\]

\[
E[X_2(t)] = 3E[X](E[X_i(t)])
\]

\[
E[X_3(t)] = 3E[X_1(t)]E[X_i(t)]
\]

\[
E[X_4(t)] = 3E[X_2(t)]E[X_i(t)]
\]

\[
E[X_5(t)] = 3E[X_3(t)]E[X_i(t)]
\]

とする。式(25)を式(14), (17)に代入することにより非定常統計値を完全に求めることができる。

2-2 非定常確率密度関数の推定　動的信頼性の
評価を行うには、一般に状態数の確率密度関数が必要となるが Fokker-Planck 法の場合には、これは式
(7) を満たす P を求めることが唯一の方法を除く。しかし
系が非線形の場合には式(7)の微分方程式とは
非常に困難であり、したがって近似解として、経験的に
一つある Maxwell-Boltzmann 分布で近似する方
法(9)や、Hermite 展開式を用いる Laguerre
展開式を用いるので相対的な精度がでる方法が考案されている。しかし実際の応用にあたっては相当
顕著な解析が必要である。本論文ではできるだけより
実用的な解析方法を提案する。

確率密度関数の形は従来の種々の研究結果を参照す
不規則外乱を受ける非線形構造系の動的信頼性解析

報告者もしくは指数関数を基本としている。そこでここでも指数関数を基礎とした次の様な形を仮定する。

\[P(X_1, X_2, t) = r_1(t) \exp[r_2(t)X_1 + r_3(t)X_2 + \cdots + r_{n(t)}(t)X_n] \]

\[s = 1 + \sum_{i=2}^{s-1} (k+1) \]
\[i + j = 2, \ldots, k, \ldots, n \]
\[(i + j = k \text{の時 } i, j = 0, \ldots, k) \]

ここで式(26)の指数関数部を構成している状態変数の相関に関する期待値を定義される。

\[E[X_i] = \int x_i P(X_i, X_2, t) dx_1 dx_2 \]

式(27)が成り立つが、式(27)の定義における \(P(X_i, X_2, t) \) の形式は(26)で与えられているので、式(27)の定義は係数 \(r \) を含む形で解析的に求められる。一方、式(27)左辺は式(8)のモーメント方程式より既に得られているので、積分係数 \(r(k)(m=1, \ldots, s) \) に関する \(k \) の連立方程式解が得られる。ただし未知数としての係数 \(s \) 個であるので対応方程式は \(k \) 個 \((k=s-1)\) であり一旦変わっているがこれは確率密度に関する正規化条件

\[\int P(X_i, X_2, t) dx_1 dx_2 = 1 \]

が加わることにより十分となる。

以上により係数を求める式(26)に代入することにより確率密度関数が得られるが、一般に近似精度を上げるため次数及び項数を大きくとると解析的に求めまとする数値的に求めることになる可能性が強い。

ここでは具体的な例として変数の二次の組合せのみからなる確率密度関数の示しておくが、この場合は係数が解析的に求められる。

\[P(X_1, X_2, t) = r_1(t) \exp[r_2(t)X_1 + r_3(t)X_2 + r_{n(t)}(t)X_n] \]

\[r_1(t) = \frac{1}{2\pi E[X_1]E[X_1] - E[X_1]^2} \]

\[r_2(t) = \frac{E[X_1]E[X_2]}{2[E(X_1)^2 + E(X_2)^2] - [E(X_1)E(X_2)]^2} \]

\[r_3(t) = \frac{E[X_1]E[X_2]}{2[E(X_1)^2 + E(X_2)^2] - [E(X_1)E(X_2)]^2} \]

\[r_{n(t)}(t) = \frac{E[X_1]E[X_2]}{2[E(X_1)^2 + E(X_2)^2] - [E(X_1)E(X_2)]^2} \]

3-1 疲労問題 動的信頼性を論じる上で重要な値の一つである超過回数期待値についてまず考えます。

ある時間 \(t \) において振動変位が正の振幅をもつとする一定レベルを単位時間当たりに交差する回数の期待値 \(\nu(t) \) は、信頼性理論により

\[\nu(t) = \int_{0}^{\infty} x P(x, t) dx \]

と表されるので、非定常確率密度関数式(26)を上式に代入すれば \(\nu(t) \) が求められる。

ところでこの超過回数期待値 \(\nu(t) \) は応答変位に関するものであるが疲労評価においては応力レベルでの定式化が必要となる。これは応力レベルにおける非定常確率密度関数 \(P(S, \hat{S}, t) \) を用いて次の変換公式

\[P(S, \hat{S}, t) = P(x, x, t) \]

により容易に求められる。

ここでは具体的例として \(P(x, x, t) \) を式(29)で、また変位と応力の関係を \(S = bx \) なる比例関係で近似した場合について応力レベルの超過回数期待値 \(\nu(t) \) を求める以下の様になる。

\[\nu(t) = \frac{\sqrt{\sigma^2 \sigma_f^2 K_{ff}^2}}{2\pi \sigma_0} \exp(-\frac{S^2}{2\sigma_0^2}) e^{-at} \]

\[SK_{ff} \exp(-\frac{S^2}{2\sigma_0^2}) - \text{Erf}(h) \]

\(\text{Erf}(h) = \text{誤差関数} = \frac{1}{2\sqrt{\pi}} \int_{0}^{\infty} e^{-u^2} du \]

\[h = \frac{-SK_{ff}}{b\sigma_0 \sigma_f^2 K_{ff}^2} \]

\[\sigma_0^2 = E[x^2], \sigma_f^2 = E[x_0^2], K_{ff} = E[x(t)] \]

3. 動的信頼性理論

上に式の信頼性を言えその内容は多岐にわたる。この中でも最も重要な疲労、及び初期破壊の問題に関して考察する。
不規則外乱を受ける非線形構造系の動的信頼性解析

\[I, I + dt \] において系に累積される疲労損傷 \(AD \) は

\[AD = \sum_{N_t} \frac{n_i}{N_t} \]

(33)

\(N_t \): 広力レベル \(S_t \) における破壊までのサイクル数

\(n_t \): \(dt \) 間における応力レベル \(S_t \) の実際のサイクル数

ただしここでは応力 \(S \) は不規則過程であるため \(n_t \) は期待値という形で求められることになる。

式(33)で必要となる \(N_t \) の値については \(S-N \) 曲線として図1 の様な直線近似による曲線を採用する場合、\(j \) 領域における \(N_t \) の値は

\[(N_t)_j = \frac{(a_j)^2}{S_j} \]

(34)

\(a_j \): \(j \) 領域直線と様軸との交点の応力

\(\beta_j \): \(j \) 領域直線の傾きが \(-1/\beta_j \) なる、次に \(n_t \) の期待値を求める。

さて \(\nu(t) \) は単位時間当たり、あるレベル \(S \) を正こう配で横切る数の期待値であるから、応答がほぼ狭帯域過程とみなし得る時には、\(dt \) 時間におけるレペル \(S \) を横切る回数とレベル \(S + \Delta S \) を横切る回数の差の期待値は \(S, S + \Delta S \) 間の正の極値数に等しく、これは \(E[n_t] \) に等しいことが期待できる。

\[E[n_t] = \Delta t \left(\nu_t(t) - \nu_{t+1}(t) \right) \]

(35)

\[\Delta t \left(\frac{\Delta \nu(t)}{\Delta S} \right) = \frac{E[n_t]}{\Delta S} \]

(36)

故に式(33)〜(36)より \(\Delta t \) 時間における累積疲労損傷の期待値 \(E[AD] \) は、図1における直線近似数を \(j \) 値とした場合次式の様になる。

\[E[AD] = \Delta t \sum_{i=1}^{\infty} \frac{1}{i^\alpha \pi} \left(\frac{\Delta \nu(t)}{\Delta S} \right) dS \]

(37)

また単位時間当たりの疲労損傷期待値 \(\varphi \) は式(37)より

\[\varphi = \frac{E[AD]}{\Delta t} = \sum_{i=1}^{\infty} \frac{1}{i^\alpha \pi} \left(\frac{\Delta \nu(t)}{\Delta S} \right) dS \]

(38)

となる。上式において \(\nu(t) \) は式(32)で与えられているので \(\varphi \) は求まるが、特に \(\beta_j \) が整数の場合には解析が次の様に得られる。

式(38)を \(\varphi = \sum_{j=1}^{\infty} \varphi_j \) の様な形に整理した場合、各々の領域における \(\varphi_j \) は。

(i) \(\beta_j = 2m \) の時

\[\varphi_j = \frac{\sigma_0 + \rho + \rho + \rho + \rho}{(a_j)^2} \]

(39)

\[= \frac{A m!}{4 \pi \sigma_{db} B} \left[e^{-\beta_j} \sum_{r=0}^{\infty} S_{j+r}^{m-r} - e^{-\beta_j} \sum_{r=0}^{\infty} S_{j+r}^{m-r} \right] \]

\[= \frac{K_{r+1} \sum_{r=0}^{\infty} \left(\frac{1}{2} \right)^r \left(2C \right)^{2m-2k+3} \right} \]

\[\times \frac{1}{2 \pi \sigma_{db}} \left[(2C)^{2m-2k+1} e^{-Cs_{j+r+1}} - S_{j+r+1}^{m+1} e^{-Cs_{j+r+1}} \right] \]

\[= - \frac{2 \pi \sigma_{db}}{(2C)^{n+1}} \left[\text{erf}(\sqrt{2CS_j}) - \text{erf}(\sqrt{2CS_j}) \right] \]

(ii) \(\beta_j = 2m + 1 \) の時

\[\varphi_j = \frac{A m!}{4 \pi \sigma_{db} A} \left[(-1)^n (2m+1) \right] \]

\[\times \left[\frac{1}{2 \pi \sigma_{db} A} \sum_{r=0}^{\infty} \left(\frac{1}{2} \right)^r \left(2C \right)^{2m+1} \right] \]

\[= \frac{2 \pi \sigma_{db}}{(2C)^{n+1}} \left[\text{erf}(\sqrt{2CS_j}) - \text{erf}(\sqrt{2CS_j}) \right] \]

\[= - \frac{K_{r+1} \sum_{r=0}^{\infty} \left(\frac{1}{2} \right)^r \left(2C \right)^{2m+1} \right} \]

\[\times \left[\frac{1}{2 \pi \sigma_{db} A} \sum_{r=0}^{\infty} \left(\frac{1}{2} \right)^r \left(2C \right)^{2m+1} \right] \]

\[= \frac{2 \pi \sigma_{db}}{(2C)^{n+1}} \left[\text{erf}(\sqrt{2CS_j}) - \text{erf}(\sqrt{2CS_j}) \right] \]

\[= - \frac{K_{r+1} \sum_{r=0}^{\infty} \left(\frac{1}{2} \right)^r \left(2C \right)^{2m+1} \right} \]

\[\times \left[\frac{1}{2 \pi \sigma_{db} A} \sum_{r=0}^{\infty} \left(\frac{1}{2} \right)^r \left(2C \right)^{2m+1} \right] \]

\[= \frac{2 \pi \sigma_{db}}{(2C)^{n+1}} \left[\text{erf}(\sqrt{2CS_j}) - \text{erf}(\sqrt{2CS_j}) \right] \]
不規則外乱を受ける非線形構造系の動的信頼性解析

\[\rho_j = \frac{1}{2\pi \sigma b^3} \left[\sum_{r=1}^{n_r} \left(\frac{1}{(2B)^{n_r+1}} \left[S_j^{m+2-2r} e^{-\alpha (m+2-2r)} - S_j^{m+1-2r} e^{-\beta (m+1-2r)} \right] \right) \right] \]

\[\times \left[\frac{1}{2\pi \sigma b^3} \left(\frac{1}{(2B)^{n_r+1}} \left[S_j^{m+2-2r} e^{-\alpha (m+2-2r)} - S_j^{m+1-2r} e^{-\beta (m+1-2r)} \right] \right) \right] \]

\[\times \left[\frac{1}{2\pi \sigma b^3} \left(\frac{1}{(2B)^{n_r+1}} \left[S_j^{m+2-2r} e^{-\alpha (m+2-2r)} - S_j^{m+1-2r} e^{-\beta (m+1-2r)} \right] \right) \right] \]

ただし, \(A = \frac{1}{2\pi \sigma b^3} - K_{rr} \) は

\[B = \left[\frac{1}{2\pi \sigma b^3} + \frac{K_{rr}}{2\pi \sigma b^3} A^2 \right] \]

\[C = \frac{1}{2\pi \sigma b^3} \]

3-2 初通過破壊問題
対象とする不規則外乱の性質や材料の特性によっては疲労損傷期間が重要であるが初通過破壊問題である。これは応答の最大値が時間経過による影響を受ける確率 \(E[D] \) が得られる。

\[E[D] = -\int_y \left(\frac{1}{2\pi \sigma b^3} \right) \int_{\eta}^{\sigma S} \left(\frac{d\eta(t)}{dt} \right) d\eta dt \]

4. 非綫形がた系の地震時動的信頼性問題への適用

4-1 解析モデル

化学プラントや原子力プラント
不規則外乱を受ける非線形構造系の動的信頼性解析

図 5 変位の非定常分散

図 6 変位と速度の非定常共分散

図 7 速度の非定常分散

図 8 応答変位の非定常確率密度

図 9 応答速度の非定常確率密度

式 (46) の数値計算に際しては次の諸定数を用いた。
\[\delta = 0.01, \quad \omega_0 = 20 \text{ rad/s}, \quad \varepsilon = 0.1 \]
\[\gamma = 2.5 \times 10^3 \text{ cm}^2/\text{s}^2 \]
\[e(t) = \exp(-0.125t) - \exp(-0.25t) \]
また図 4 にはエンベロープ関数の形状を示す。

4・2 非定常共分散・非定常確率密度関数 応答の非定常共分散は式 (14)，(25) 利用することにより図 5～7 の様に求められる。また非定常確率密度関数は式 (29) を用いて \(t = 5, 15, 25 \text{s} \) に対して求めると図 8, 9 の様になる。さらに図中には本理論の妥当性を確認するために実施した、250 番の偶然地震波によるシミュレーション結果も載せているが、理論と実験結果はかなり一致を示しており本論文において提案した解析手法の妥当性を確認できたものと考える。

4・3 疲労評価 まず動的信頼性評価上重要な要素である単位時間当たりの超過回数期待値を式 (32) に
より2種類の応力レベルについて求めたものが図10である。
次に図1のS-N曲線において最も簡単なj=1を採用しつつ式(34)におけるβrとしてβr=2m（m：整数）と仮定した場合の、単位時間当たりの疲労損傷期待値δ及び累積疲労損傷期待値E[D]を図11、12に示す。この場合の使用したS-N曲線の諸定数はβr=14、αs=3.92×10^6 Pa、疲労限=9.81×10^7 Paである。
ところで疲労に関して最も設計者が知りたいのは疲労寿命であろうが、地震応答に関して言えば著者の知る限りほとんど求められていない。これは地震発生回数、継続時間、最大加速度等のすべてが確率変数であり十分な統計データが得られないためであろうと考えられるが、ここではランダム非線形振動解析の一応用という立場で、いくつかの大変な仮定を設けながら疲労寿命の推定を試みる。
地震波1波を想定した場合、最終的な累積疲労損傷値が寿命に関係するが、その値はスロッシングの様な長周期成分を対象とする限り図11の様に要部動部ではほとんど決まりえない。あまり継続時間長の影響を受けないものと考え継続時間は確定値とする。次にエンベロープ関数の形であるが、これには種々の表現がありパラメータも多いため詳細の検討は今後の問題として、ここでは同一地点では同一エンベロープを有すると仮定して確定値とする。
ところで地震の統計データは最大加速度振幅で整理されることが多く、これを本論文での手法と結合するには同一特性の地震波群に対する加速度最大値の平均Aと累積疲労損傷期待値Dとの関係式を求る。この関係は図13の様に単調増加となることが期待できる。
不規則外乱を受ける非線形構造系の動的応答解析

4-4 初通過破壊 式(46)の系で疲労より初通過
破壊が問題となる時には、式(45)を用いて破壊確率を
求めることがある。図15は減衰比をパラメータとし
ていく（関）価応力レベルと破壊確率の関係を示した
ものであり、本計算例の場合減衰比が破壊確率に大
きく影響することがわかる。

5. まとめ

（1）キュムラント打ち切り手法をFokker–Planck
法に適用することにより非定常不規則外乱を
受ける非線形系の応答推定法を導出し、数値実験結果
と比較して理論の妥当性を確認した。

（2）定常確率密度を比較的簡単に、かつ任意の
精度で求め得る手法を考案した。これにより応答の推
定から確率信頼度までを統一的に解析可能となった。

（3）応答のピーク値に対する確率密度を仮定する
ことにすると、超過回数期待値から直接に累積疲労損
傷期待値を推定できる手法を提案した。

（4）従来ほとんど解析されていなかった非定常性を考
慮した場合の地震震象に対する疲労寿命の簡略推定を
行った。

最後に、日ごろから有益な助言をいただいた
東京大学 柴田 比教授に感謝いたします。

文献

EM 5, 100 (1974), 1026.

170.

（6）藤田・谷村，振動，45-397，C（昭54），985。

（7）岡村，土木学会論文報告集，308（昭56），1。

（8）Haines, C.W., J. Eng. Math., 1 (1967), 293。

（9）生田・ほか3名，產業大学工学部研究報告，29（昭55），
55。

（10）松村・牧野，建築学会論文報告集，273（昭53），55。