Comparision Component Mode Synthesis Method with MSC-NASTRAN

by Masaaki OOKUMA and Akio NAGAMATSU

The authors proposed “Component Mode Synthesis Method (CMS in brief)” and “Multiple Component Mode Synthesis Method (MCMS in brief)” in the former papers of this study for analyzing the vibration of complex mechanical structures.

In the present report, CPU time and accuracy of CMS and MCMS are compared with those of MSC-NASTRAN in calculating the natural frequencies and the dynamic responses of two model structures. It becomes clear that the vibration of these structures can be analyzed by both CMS and MCMS with much less CPU time than by MSC-NASTRAN and with the same accuracy.

Key Words: Vibration, Natural Mode, Natural Frequency, Dynamic Response, Component Mode Synthesis Method, Finite Element Method, MSC-NASTRAN

1. まえがき

大形で複雑な機械構造物の振動解析を行う方法の一つとして、著者らが提案した区分モード合成法（CMS と略記）は構造物全体（全系と呼ぶ）をいくつかの部分構造（分系と呼ぶ）に分割して、各分系について振動解析を行って得られる固有モードを一般化座標として全系に対する振動方程式を組み、全系の振動挙動を求める、という方法である。この方法では、分系の変位を各分系の固有モードを用いて表すので、全系に対する振動方程式の自由度は、物理座標上でのものよりもはるかに小さくなる。そのため、計算機容量や計算時間の点で、全系を一体として解析する有限要素法に比べて大幅に有利であると思われる。

著者らは、区分モード合成法による固有振動数と固有モード(1)および制限振動の計算方法(2)，多重区分モード合成法(3)（MCMS と略記）、実機への応用例(4)などの研究を行ってきた。そしてそれぞれをまとめて汎用プログラムを作成した。この CMS と MCMS の汎用

プログラムの実用化を図るために、世界で最も権威があり、また最も普及している有限要素法の汎用プログラムである MSC-NASTRAN との比較検討を行う必要があると考える。そこで両者で 4 種類の供体機に関する同一の計算を行って、計算の時間と精度を比較する。減衰は省略する。

なお、CMS と MCMS の解析方法については、すでに文献 (1) ～ (4) で詳しく説明したので、本報告では省略する。

2. 使用する計算機と要素

MSC-NASTRAN は IBM 3081 D, また CMS と MCMS は HITAC-M 200 H の計算機をそれぞれ使用する。両計算機システム演算速度は、ともに 10 MIPS であり、ほぼ同じ性能なので、計算速度の比較を定量的に行うことができる。

NASTRAN では、できるだけ四辺形要素を用い、それを用いることができない部分のみで三角形要素を用いる。一方、CMS と MCMS では、すべて三角形要素を用いる。両者の使用要素の違いは計算時間にはほとんど影響しない。
区分モード合成法とMSC-NASTRANの比較

3．4シリンジのエンジンブロック模型

第1の供試体は、図1に示す4シリンジエンジンブロックの模型であり、厚さは4mm均一とする。全系は節点数219点で構成する。計算に用いる材料定数は、密度7.86×10^{-4}kg/mm^{3}、線弾性係数2.058×10^{4}N/mm^{2}、ポアソン比0.3とする。

3-1 NASTRAN用の分割と計算 NASTRANでは、図1のように全系をすべて四辺形要素で分割する。そして、修正ガウス法による固有値解析を行い、続いてモード解析で周波数応答を求めめる。固有値解析を行う際には、全系の自由度を10まで縮小する方法と、1314のままの方法の2とおりを行う。自由度の縮小はNASTRANによる大自由度解析によく用いられる。

3-2 CMS用の分割と採用モード数 CMSでは、分系への分割を2とおり試みる。第1は図2のように全系を9個の分系に分割する。そして、各分系と結合領域の採用モード数を求める全系のモード数の違いによる4とおりの計算を行う。それらを表1の方法1,1',1",1"で示す。第2は図3に示すように全系を13個の分系に分割する。そして、各分系と結合領域の採用モード数より3とおりの計算を行う。それらは表1の方法2,2',2"で示す。

3-3 MCMS用の分割と採用モード数 MCMSでは、第一次分系への分割方法を2とおり行う。第1の分割方法は図4のように7個の第一次分系に分割し、さらにそれらの第一次分系を図5に示すように、第二次分系に分割する。第2の分割方法（表2の4）は、図6に示すように、5個の第一次分系に分ける。
区分モード合成法とMSC-NASTRANの比較

表1 CMSによる計算時間

<table>
<thead>
<tr>
<th>C</th>
<th>M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division</td>
<td>1</td>
<td>1'</td>
</tr>
<tr>
<td>Number of components</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Number of adopted modes of each component</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Number of adopted modes of interface region</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Number of demanded modes</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>CPU time for getting natural frequency and natural mode (sec.)</td>
<td>18.0</td>
<td>16.1</td>
</tr>
<tr>
<td>CPU time for solving forced vibration response (sec.)</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

表2 MCMSによる計算時間

<table>
<thead>
<tr>
<th>M</th>
<th>C</th>
<th>M</th>
<th>S (double)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division</td>
<td>3</td>
<td>3'</td>
<td>4</td>
</tr>
<tr>
<td>Number of second grade components</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Number of first grade components</td>
<td>7</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Number of adopted modes of each component</td>
<td>20</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Number of adopted modes of interface region</td>
<td>20</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Number of demanded modes</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>CPU time for getting natural frequency and natural mode (sec.)</td>
<td>18.7</td>
<td>16.1</td>
<td>32.1</td>
</tr>
<tr>
<td>CPU time for solving forced vibration response (sec.)</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

そして、それぞれの第一次分系を、さらに図5に示すように第二次分系に分割する。第1の分割方法については図2と同様（表2の3と3'）に変えて計算を行う。

3.4 計算時間の比較　NASTRANによる計算時間は、表3に示すように、10次までの固有振動数を求める、50 Hzから800 Hzまで0.5 Hz間隔で周期数応答を求めるのに、全系の自由度を10に縮小した場合で121秒、自由度の縮小を行わない場合は255秒かかった。一方、CMSとMCMSによる計算時間は、表1と2に示すようにほとんどの場合、20秒以内で済む
区分モード合成法と MSC-NASTRAN の比較

図 7 点 R の周波数応答
（加振点：点 F）

図 8 点 F の周波数応答
（加振点：点 F）

<table>
<thead>
<tr>
<th>DIVISION</th>
<th>NASTRAN</th>
<th>CMS</th>
<th>MCMS (double)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORDER</td>
<td>1</td>
<td>1'</td>
<td>1''</td>
</tr>
<tr>
<td>2</td>
<td>166</td>
<td>163</td>
<td>163</td>
</tr>
<tr>
<td>3</td>
<td>311</td>
<td>310</td>
<td>310</td>
</tr>
<tr>
<td>4</td>
<td>521</td>
<td>525</td>
<td>525</td>
</tr>
<tr>
<td>5</td>
<td>592</td>
<td>589</td>
<td>589</td>
</tr>
<tr>
<td>6</td>
<td>674</td>
<td>606</td>
<td>606</td>
</tr>
<tr>
<td>7</td>
<td>715</td>
<td>719</td>
<td>719</td>
</tr>
<tr>
<td>8</td>
<td>720</td>
<td>720</td>
<td>720</td>
</tr>
<tr>
<td>9</td>
<td>777</td>
<td>790</td>
<td>790</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Hz)
区分モード合成法とMSC-NASTRANの比較

図9 6シリンジのエンジンブロック模型

図10 MCMS用の第一次分系への分割方法

図11 第二次分系への分割方法（第二次分系の数：13個）

図12 第二次分系への分割方法（第二次分系の数：34個）

CMSとMCMSは、分系の採用モード数を15～20次程度で、少なくとも全系の10次まで十分良い精度で解求めることができる。

図7と8は、図1の図Fを励振した時の点Rと点Fの応答を示す。MCMSの結果はCMSの結果と比較できないほど良く一致した。これらの図から、周波数応答も、三者の結果が良い一致を示すことがわかる。

4. 6シリンジのエンジンブロック模型

第2の供体は、図9に示す6シリンジのエンジンブロック模型である。厚さ5mm均一とし、左右の外壁の間にシリングライナを有し重壁構造になっている。全系の節点数は684点である。計算に用いる材料定数は、密度7.96×10⁻⁹kg/mm³、線弾性係数9.8×10⁹N/mm²、ポアソン比0.3とする。境界条件は自由とする。

4-1 NASTRAN用の分割と計算 NASTRANでは、図9に示すように、左右奥外壁部分とライナ部分はすべて四辺形要素、隔壁部分とライナと外壁を結ぶ上面壁と中間壁の一部のみに三角形要素を用いた。すなわち、四辺形要素628個、三角形要素112個を用いる。

計算は修正ギプソス法によって、自由度を16と75に縮小して解析する方法と逆反復法によって自由度を縮小せずに三次まで求める方法の3とおり行う。前者の方法で自由度を縮小せずに10次（剛体モードは除く）まで求めようとすると、計算時間が100分間を越えてしまうので中止した。

4-2 MCMS用の分割と計算 図9のモデルを図10に示すように4個の第一次分系を分割し、さらに図11と12に示すように、2とおりの第二次分系への分割を行う。採用モード数は、すべての分系と結合領域について40とする。なお、本供体にCMSを適
区分モード合成法とMSC-NASTRANの比較

4-3 計算時間の比較 NASTRANによる計算時間は、表6に示すように、10次まで求めると、自由度を16に縮小した場合で480秒、75まで縮小した場合で726秒、逆反復法で縮小せず三次まで求めて952秒かかった。一方、MCMSでは、表5に示すように、第2次分系への2とおりの分割方法とも、14次まで求めると、採用モード数をすべての分系と結合領域について40とした場合で206秒、採用モード数を20とした場合が176秒であった。このように、MCMSが計算時間の点で有効であることが、この供試体についても明らかになった。

4-4 固有振動数 NASTRANとMCMSによって得られた固有振動数を表7に示す。MCMSでは、第2次分系への2とおりの分割方法に対する解は完全に一致した。このことから、分系への分割方法の違いによる影響はほとんどないことがわかる。第1の供試体に関する結果（表4）に比べて両者の結果はかなりずれているが、これは、本供試体が多いのうとつの部分を有しており、三角形要素と四辺形要素自体の解析精度の差が著しく発生してしまったためであり、MCMS自体の誤差はかなり小さいのではないかと思われる。

5. 結 言

CMS、MCMSおよびMSC-NASTRANによって2種類の供試体の解析を行い、計算時間と精度を比較した。その結果、CMSとMCMSは、MSC-NASTRANに比べてかなり計算時間が短く、計算精度も十分良いので、使用上問題ある方法であることがわかった。

最後に、本研究にあたり終始ご協力いただいたす・自動車(株)の秋葉茂四郎氏と大谷正彦氏に対して深く感謝の意を表します。

文献

(1) 大熊、長松、機械論、No.820-8 (昭57-8), 27.
(2) 大熊、長松、機械論、No.820-8 (昭57-8), 35.
(3) 大熊、長松、機論、本講演論文集、
(4) 大熊、ほか2名、機械論、No.820-13 (昭57-10), 48.
[質問] 西脇 暢清（株）新潟鉄工所

（1）第1の供試体については、USC-NASTRANではすべて四辺形要素を用い、CMSとMCMSではすべて三角形要素を用いている。第2の供試体においてもMSC-NASTRANはできる限り多くの四辺形要素を用い、MCMSではすべて三角形要素を用いて解析している。計算時間は、使用する有限要素の違いによって大幅に違ってくると思われるので、本報告での計算時間の比較は意味がないのではないかと思われるがいかがか。

（2）第2の供試体（6気筒シリングブロックモデル）に対してのCMSで解析した場合の計算時間や解析精度はいかがか。

【回答】（1）振动解析においては、計算時間の大半は有限要素解析の過程に費やされるので、有限要素の種類の違いによる計算時間の差は少ないと思います。本報告のように要素の種類が異なるままで比較検討を行った。しかし、このことは具体的な解析結果によって確認する必要があると判断し、論文採択後に、付表1に示すとおり、3種類の四辺形要素のプログラムを作成し、CMSとMCMSで追加計算を行ってみた。第1は、ギャラガの本に載っているもので、24面の面最多多角形を用いたものである。第2は、四辺形を2面の面最多多角形の組合せ、2と4の面最多多角形の組合せ、結合した後の面最多多角形自由度を消去したものを、現在の本を使われている四辺形要素はほとんどがこの3種類であり、したがってNASTRANの四辺形もこのうちどれかであろうと思われるが、どれであるかは、NASTRANの中味がブラックボックスなのでわかりえない。しかし、付表1から明らかのように、計算時間も計算精度も、本報告の三角形要素を用いたものと同程度であった。そこで、本報告中での計算時間の比較は意味があると思われる。

（2）CMSでこのモデル解析することは、東京工業大学総合情報処理センターでの計算機運用上の容易さに制限のために困難であり、行っていないので、具体的な回答はできない。ただ、計算精度はMCMSによる結果とほぼ同じだと推定される。