小齿轮齿车の负荷能力に関する研究*
（第1報、調質鋼平歯車（z=13）の面圧強度）

小田哲**, 小出隆夫**
Satoshi ODA, Takao KOIDE

Key Words: Gear, Fatigue, Smaller Number of Teeth, Load Bearing Capacity, Pitting, Surface Durability, Normalized Steel, Hertz Stress, Specific Sliding

1. 緒言
近年、歯車装置に対して高負荷・高速化が求められ、また一方ではコスト低減の観点から小形軽量化が要求されている。このため小容積高性能で大きな変速比の得られる連星歯車装置が注目を集めている。連星歯車装置の小形軽量化を図るため、太陽歯車や連星歯車として、標準歯車の切り下げ限界変数よりも小さい変数の外歯車（小歯数軸歯車）がしばしば使用されているが、これらの歯車においてはすりへり摩耗、ビッチングおよびスコーリングなどの歯面損傷や歯の折損などがしばしば発生し、設計上問題となっている。歯数の比較的大きな歯車の負荷能力に関しては、従来多くの研究者によって研究が行われており明らかにされてきているが、歯面強度に及ぼすすべり率の影響や寸法効果などについてまだ不明な点が多く、小歯数歯車の負荷能力を正確に評価することは現状では困難である。

本研究では、このような情勢を考慮して、様々な材料、熱処理条件の小歯数歯車に対して運転試験を行い、これらの歯車の負荷能力について明らかにし、より正確な小歯数歯車の設計資料を得ることを目的としている。

本報では、軸位係数の異なる小歯数調質鋼平歯車に対して運転試験を行い、これらの歯車の面圧強度について明らかにすることができたのでこれらの結果について報告する。

2. 実験方法および実験装置
2-1 実験歯車 本実験に用いた歯車の材料は

S45C調質鋼（熱処理条件：850℃×1.5 h 水冷, 620℃×2 h 空冷, 硬さ：Hv=200）で、歯車はホブを用いて歯切り加工したもので精度はJIS 4級程度である。表1に試験歯車の諸元を示す。歯車の軸位係数は、歯形としての条件が実質的に変わらないように歯先がり限界、歯元切り下げ限界を考慮して、実用上歯数 z1=13の歯車で選択しろうと考えられる上、下限の軸位係数を含む z1=0.24, 0.5, 0.75 の計3種類を

<table>
<thead>
<tr>
<th>表1 試験歯車諸元</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>歯形</td>
</tr>
<tr>
<td>モジュール m</td>
</tr>
<tr>
<td>工具圧力角 αp</td>
</tr>
<tr>
<td>歯数 z</td>
</tr>
<tr>
<td>構成歯数 a</td>
</tr>
<tr>
<td>軸位 G,A</td>
</tr>
<tr>
<td>軸位 G,B</td>
</tr>
<tr>
<td>軸位 G,C</td>
</tr>
<tr>
<td>齒幅 δ mm</td>
</tr>
</tbody>
</table>

図1 両先がり限界および歯元切り下げ限界

* 昭和56年3月17日 中国四国支部第19期総会講演会において講演。原稿受理 昭和57年7月15日。
** 正員、電機理工学部（☎680 鳥取市湖山町南4-101）。
選んだ。図1は圧力角αc=20°の基準ラックカットによつて創成される歯車の、歯先とがり限界と歯元切り下げ限界を、横軸に歯数、縦軸に軸間距離をとって示す。図中の印などの点は、本実験に用いた各歯車に対するそれぞれの位置を示す。いずれの歯車も歯車成立限界内にいており、歯元切れと歯元切り下げが生じていないことがわかる。なお、x1=0.75の小歯車の歯先厚は0.1mm（モジュール）である。

2-2 試験機および実験方法 図2は本実験に使用した動力循環式歯車運転試験機の構略図を示す。動力は出力3.7kWのVSモータを使用し、このモータにより小歯車（駆動歯車）の回転速度が2,000～3,000rpmの範囲で無段階に変えることができる。この試験機の最大循環能力は10kWであり、負荷トルクは軸に接続したトルク検出用ひずみゲージにより知ることができる。また中心間距離は固定（a=59.93mm）で、表1の歯車対を使用した場合の円周方向バッフルラジオはc=290μmで、これはJISに規定されている最大値と最小値の和の1/2に相当する。潤滑油としてはFBKオイルRO150を用い、油温40°C、油量0.5L/minで強制給油した。

実験は小歯数歯車に着目し、小歯車のピッチング面積率が2％になるときの繰返し数をもつて面圧疲労寿命として、小歯車に対するS-N曲線を求めた。ピッチング面積率は歯車の精度を考慮して最も損傷の激しい歯1枚に対して求めた。ピットの面積はテレビカメラ、VTRおよびモニタテレビを用いて歯面を10倍に拡大して測定した。実験時の小歯車回転速度は1,800rpmであり、本実験は軽荷重（面圧疲労限度の約40％）で下で10回ならし運転を行ったのちに行った。

3. 実験結果および考察

3-1 運転試験結果 図3は本実験により得られた各小歯数歯車に対する運転試験結果を示す。歯車対G.Cで外歯車（x2=0.51）のピッチング面積率が小歯車（x1=0.75）よりも先に2％に達するので、これに対する結果をあわせて示している。この図の縦軸はかみあいピッチ円上の円周力、横軸は継返し数を示す。図3より小歯車の面圧疲労限度円周力P0はG.A（x1=0.24）、G.B（x1=0.5）ではほぼ等しく、G.C（x1=0.75）ではそれよりもかなり高くG.A、G.Bのほぼ1.7倍であることがわかる。しかし、G.Cの大歯車（x2=0.51）に対する結果はG.A、G.Bの大歯車の場合とほぼ等しく、歯車対の面圧疲労限度円周力は各歯車ともほぼ同程度である。

図4は各歯車対の実験終了時（小歯車のピッチング面積率約2％）におけるピッチング写真の代表例を示す。G.Cには軽いスコーリングがあらわれることが、ピッチングの発生位置はいずれの歯車対においても小歯車（駆動歯車）でかみあいピッチ点（以下ピッチ点と記す）付近、大歯車（被動歯車）では内の一対かみあい点付近である。歯車対G.A、G.Bでは小歯車の最初にピッチングが生じ、これが進展して歯車対の面圧疲労寿命を支配する。なお、G.Aの大歯車にはピッチングは生じないが、G.Bでは小歯車より遅れて大歯車にピッチングが生じ、小歯車のピッチング面積率が2％に達した時点で大歯車の面積率は1％程度であり、小歯車の方が大きい。G.Cでは最初大歯車にピッチングが生じ、そのうち小歯車に生じる。G.Cにおいては小歯車の面積率が2％に達した時点で大歯車の面積率は4％程度であり、歯車対の面圧疲労寿命は図3に示すように大歯車のピッチングによって支配される。

図5は各歯車対のかみあい歯面におけるヘルツ応力とすべり率の計算結果を示す。図の縦軸には歯車の歯面曲率半径ρをとり、縦軸にはヘルツ応力とすべり率をとっている。ヘルツ応力はピッチ点におけるヘルツ応力（荷重分担率を1として計算した値）に対する比で表している。荷重分担率の計算には呂川の方法を用い、歯のたわみの計算には石川の式を用いた。図中、記号A, B, C, D, Pはそれぞれ、小歯車のかみあい始め、内の一対かみあい点、外の一対かみあい点、かみあい終わり、ピッチ点を示す。
ここで注意すべきことは G.A, G.B でではピッチ点が一対かみあい領域にあるのに対し、G.C では二対かみあい領域にあるということである。一般にピッチ点が一対かみあい領域にある場合、駆動歯車のピッチ点で最もピッチングが生じやすいことが知られている。これはこの点では、ヘルツ応力がかみあい領域内で最大ではないが大きなこと、すべり点がピッチ点から離れる方向に作用し、このすべり方向の逆転がピッチングの発生に影響を与えることによるものと考えられている。しかし、ピッチ点が二対かみあい領域にある場合にはこの点のヘルツ応力がかなり減少するため、駆動歯車のピッチ点が歯車対における最もピッチングが生じやすい位置になるとはかぎらないものと考えられる。

歯車対 G.A, G.B においては、図 5(a), (b) よりわかるように、ピッチ点が一対かみあい領域にあるためこの点におけるヘルツ応力が大きくなる。またこの点ですべり方向の逆転が起こるため、小歯車（駆動歯車）のピッチ点付近に最初にピッチングが生じ、これが進展して歯車対の面圧疲労破壊を支配するものと考えられる。しかし、G.C ではピッチ点が二対かみあい領域にあるため、この点ですべり方向の逆転は起こらないがヘルツ応力がかなり小さく、このためヘルツ応力がかなり大きくかつすべり率も大きい歯車の内の一対かみあい点（図 5(c) の C 点）付近に最初にピッチングが生じ、これが進展して歯車対の面圧疲労破壊を支配するものと考えられる。

図 5 より、中心間距離および歯数比が一定で、転位係数の組合せが異なる歯車対では、作用線上のピッチ点の位置は同一である点において、P1 が等しいかみあい位置ではすべり率が等しいことがわかる。また歯車対のかみあい領域は小歯車の転位係数の増加によって狭くなり、全体的に作用線上を大歯車側へ移動する。

歯車対 G.A～G.C のいずれにおいても小歯車のピッ
3-2 ビッチの進展状況と運転前後の歯形変化
図7は、G.A、G.Cに対してそれぞれ円周力$P=490$N(=1.4 Pa)、800N(=1.3 Pa)を作用させて運転試験を行った場合の、小歯車のビッチング圧縮率と縫返し数の関係を示す。この図より、ビッチングは進行性のビッチが生じてから急速に進展し、ビッチング面圧力は縫返し数の増加に対して片対数目盛ではほぼ直線的に増加することがわかる。

図8は、G.A、G.Cに対する運転前後の歯形変曲の代表例を示す。運転後の結果はいずれも、小歯車のビッチング面圧力が2％に達したときの、ビッチの発生していない部分での測定結果である。図8より運転前歯形上に現れている微少な突起が運転後にかなりなめらかになることがわかる。また歯数が小さくなると歯元における歯面曲率半径が小さくなるため、ヘルツ応力、すべり率は大きく、非硬歯車では歯元付近の歯面の摩耗量が多いことが指摘されているが、図8では運転前後で大きい歯形変化が認められないことから本実験のように潤滑状態がよい場合、歯数28以上の歯車ではこの現象は生じ難いものと考えられる。

3-3 歯車対の面圧強度
図3〜5の結果より、本実験に用いた歯車対では、ビッチ点が二対かみあい領域にある場合には駆動歯車（小歯車）の面圧強度限
度円周力は一対かみあい領域にある場合と比較してかなり増大する。そこで注意すべきことはピッチ点が駆動歯車の歯元側あるいはかみあい領域にあるかということである。ピッチ点を二対かみあい領域におとくと、一方の歯車の歯元におけるすべり率はかなり大きくなる。本実験の歯車対G.Cの場合、駆動歯車の歯元側の二対かみあい領域にピッチ点があるため、ピッチ点におけるヘルツ応力が減少し、また駆動歯車の歯元におけるすべり率も小さいので、駆動歯車の面圧疲労限度円周力は増大する。ピッチ点を駆動歯車の歯先側の二対かみあい領域におとく場合、例えばG.Cを増速かみあいで使用する場合にはヘルツ応力、すべり率は減速かみあいの場合とかわらないので、ピッチ点におけるヘルツ応力は減少しピッチ点にピッチングが生ずる可能性は低くなるが、駆動歯車（大歯車）の歯元におけるすべり率が大きくなるためヘルツ応力が高くてすべり率も大きい内の一対かみあい点に最初にピッチングが生じる可能性が高くなり、駆動歯車の面圧疲労限度円周力の増大が期待できない場合があると考えられる。

本報において明らかになった諸点を要約すると次のようになる。
1. 駆動歯車においては、一般にかみあいピッチ点付近に最もピッチングが生じやすいが、かみあいピッチ点が歯先側の二対かみあい領域にある場合には内の対かみあい部分にも生じる可能性がある。また被動歯車においては内の対かみあい点付近に最もピッチングが生じやすい。
2. かみあいピッチ点を駆動歯車の歯元側の二対かみあい領域におとくことにより、駆動歯車の面圧疲労限度円周力を大幅に増大させることが可能である。
3. 調質鋼平歯車同士の歯車対の場合、かみあいピッチ点が一対かみあい領域にある場合には歯車対の面圧疲労寿命は駆動歯車のピッチングによって支配されるが、二対かみあい領域にある場合には被動歯車のピッチングによって支配される場合がある。この場合

図8 運転前後の歯形変化

(a) G.A (P=1.4Pn, N=2.5×10^4)

(b) G.C (P=1.5Pn, N=2.5×10^4)
歯車対の面圧発生力発生力の増大が各円周速度の増大が一対かみあい領域にある場合と比べてあまり期待できないが、従来歯車に駆動歯車よりも面圧発生力が大きい材料（熟成材）を使用すれば有効である。

（4） 位置距離および歯数比が一定で、軸位角速度の組合せのうちが異なる歯車対では、作用線上のかみあいピッチ点の位置は同一であるが、歯面曲率半径が等しいかみあい位置ではすべり率は等しい。歯車のかみあい領域が歯車の軸位角速度の増大によって狭くなり、全体的に作用線上を歯車側へ移動する。

（5） ピッチングは発生後急速に進展し、ピッチング面積は綾返し数の増加に対して片対数目盛でほぼ直線的に増大する。また、本実験条件では運転前後で大きな歯歯変形は認められなかった。

おわりに、本研究を行うにあたり、実験装置整備に熱心に協力された本学文部授業敷税を千秋、本学大学院生谷倉隆治の各氏に対して深く感謝の意を表します。

文 献

（1） 歌川・明山、歯車の設計、昭和40、35、オーム社。
（2） 石川、機論、17-59、昭和28、103。
（3） Dudley、D.W.、Practical Gear Design、1954、39、McGraw Hill。

討 論

（質問） 石 建 彰（佐賀大学理工学部）

質問者は、小歯数歯車（z1=2〜4）の負荷能力の研究を行っている(付1) (付2)。本研究では、小歯数歯車の歯数比をz1=13と限定しているが、得られた結果は、どの程度少ない歯数の場合まで応用できるのか。

（回答） 自習歯車装置の太陽歯車などにz=13程度の歯車は多く使用されており、このような歯車に対する面圧発生力設計資料が強く望まれているため、本報では該当にも記しているようにz=13の歯車に対して検討を加えている。

本報で示された結果の適用範囲については種々の諸元の歯車対の、かみあい時に発生する歯面応力、すべり率を検討することによりある程度判断できるものの、すべり率を検討することによりある程度判断できるものと考えられる。そこで、さて、z1=8〜12、z2/z1=2の場合の、かみあい位置における歯面応力、すべり率を種々の軸位角速度に対して調べたところ、z1=12の場合には軸位角速度がある値ですべり率を13の場合と比べてそれぞれ大きくならないこと、また、z1=9では軸位角速度にかかわらず歯面応力はピッチ点における値よりも大きく、すべり率もかまね大きくなることがわかった。これらのことから本報のz1=13の歯車に対する結果は軸位角速度にかかわらずz1=12の歯車、軸位角速度の選び方によってはz1=10程度の歯車まで適用できるものと考えられる。この問題については次報で詳しく述べたいものと考えている。

（付1） 石橋・ほか2名、機論、47-416、昭和50、507。
（付2） 石橋・ほか2名、機論、48-430、昭和57、843。