炭素繊維強化プラスチックの切削における工具摩耗*（工具材種の影響）

佐久間 敬三**, 瀬戸 雅文**
Reizo SAKUMA, Masafumi SETO
谷口 正紀†, 横尾 烈道**
Masaki TANIGUCHI, Yoshimichi YOKOO

Key Words: Cutting, Carbon-Fiber-Reinforced-Plastics, Facing Test, Properties of Tool Material, Tool Wear, Wear Rate

1. 結 言

炭素繊維強化プラスチック（CFRP）はガラス繊維強化プラスチック（GFRP）に勝る比強度および弾性率を有していることから高性能の複合材料として航空機部品・機械部品その他の工業材料として開発され、すでに実用段階に入っている。精密部品としての用途が増大するにつれて、各種切削加工の必要性も増大しているが、CFRP の切削に関する研究・報告は極めて少ない。

著者らは、これまで主として GFRP の切削における工具摩耗の挙動に関して報告を行ってきたが、CFRP は分散材の形状を GFRP を含む非金属系の複合材料でありながら、物理的・機械的性質が大きく異なるため、その切削加工時の工具摩耗特性も GFRP の場合とはかなり異なった傾向を示すものと考える。

そこで、本研究では炭素繊維強化プラスチック（既報**の GFRP 材を参考にして試作）に対する端面旋削試験を行い、工具材種の影響をみた。主に工具の摩耗形状および摩耗量の面から CFRP 切削における切削速度と工具摩耗との関係について調べ、既報**の GFRP の場合と比較し、種々の観察をした。

2. 実験装置および実験方法

供試材は炭素繊維強化プラスチックパイプ材（内径 102 mm、外径 122 mm、長さ 100 mm）で、成形法および材種は既報 GFRP の場合と同様フィラメントワッキング法およびエポキシ樹脂である。ヘリカル巻きの巻付け角は 60°（GFRP：54°）。繊維含有率は約 64.5%（GFRP：65%）である。

使用工具は 32-3 形クランプパイプ （−5°、−5°、5°、15°、15°、0.8 mm）で、チップ材種は超硬合金

| 表 1 被削材および補強繊維の諸性質
<table>
<thead>
<tr>
<th></th>
<th>Reinforced plastics</th>
<th>Fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength (MPa)</td>
<td>CFRP</td>
<td>GFRP</td>
</tr>
<tr>
<td>Young's modulus of elasticity (GPa)</td>
<td>156.5</td>
<td>55</td>
</tr>
<tr>
<td>Percent elongation (%)</td>
<td>142</td>
<td>7.8</td>
</tr>
<tr>
<td>Compressive strength (MPa)</td>
<td>0.5</td>
<td>137</td>
</tr>
<tr>
<td>Bending strength (MPa)</td>
<td>112.7</td>
<td>48</td>
</tr>
<tr>
<td>Coefficient of thermal expansion (×10^-6/°C)</td>
<td>0.2</td>
<td>0.18〜0.28</td>
</tr>
<tr>
<td>Thermal conductivity (W/(m·K))</td>
<td>4.19</td>
<td>(0.3μ²)</td>
</tr>
<tr>
<td>Specifc heat (J/(kg·K))</td>
<td>7.12</td>
<td>(1.07μ²)</td>
</tr>
<tr>
<td>Specific resistance (Ω·cm)</td>
<td>0.0004</td>
<td>—</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>—</td>
<td>1.80</td>
</tr>
</tbody>
</table>

Remark: above mentioned values are mainly obtained from manufacturer's data.

1 GPa = 100 kGf/mm², 1 MPa = 0.102 kGf/mm², 1 W/(m·K) = 2.39 ×10^3 cal/(cm·a·°C), 1 kJ/(kg·K) = 0.239 kcal/(kgf·°C)

* 昭和 58 年 6月 19日北陸信越支部北陸地方講演会において論文講演として講演、原稿受付 昭和 58 年 2月 28日。
** 正員、九州大学工学部（〒812 福岡市東区筑紫 6-10-1）。
*** 正員、宇部工業高等専門学校（〒753 宇市市常設台）。
† 正員、山口大学工学部（〒753 宇市市常設台）。
炭素繊維強化プラスチックの切削における工具摩耗

P 20, M 10, K 10 (略記号 P 20, M 10, K 10), Al₂O₃ 系白色セラミック (同 CW), Al₂O₃・TiC 混合系黑色セラミック (同 CB), TiC 系サーメット (同 TIC), チタンナイトライド系サーメット (同 TiN) および含タンタルナイトライド系サーメット (同 TaN) である。その物理的・機械的性質を表 2 に示す。なお、使用工具は大閉鉄工所製 LS 形旋盤 (450 mm×800 mm) である。

切削条件は、切込み 1.0 mm, 送り 0.1 mm/rev の端面旋削で、主軸回転数は超硬合金 P 20 およびセラミック CW では 100～1500 rpm, その他の場合 300, 500, 1000 rpm である。送り方向は外側から内側向き、切りくず洗浄を目的として用いた切削剤は水溶性 1 種 1 号 (エマルジョン形) で、濃度は約 3 %, 流量 1.5 l/min である。測定法としては、オリンパス製 STM 形工具顕微鏡を用いて試験機摩耗部を測定し、さらに明石製作所製 IS-40 形走査電子顕微鏡を用いて摩耗部の詳細な観察を行った。

3. 実験結果および考察

3-1 工具摩耗形態 炭素繊維強化プラスチックの切削における工具の損傷状態を図 1 ～ 3 に示す。図 1 および図 2 は工具顕微鏡写真で、それぞれ主軸回転数 300 rpm および 1000 rpm の場合、図 3 は走査電子顕微鏡写真で、500 rpm の場合について示した。

図 1 の超硬合金系 K 10 の場合、いずれの主軸回転数においても、明らかに摩耗した部分を認められる領域では丸みを帯びた帯状摩耗を呈し、その下方には被削材との接触痕と認められる黒く着色した領域が認められる。図 2 のサーメット系 TiN 工具においては、主軸回転数 300 rpm の場合と 1000 rpm の場合の間に摩耗量の違いはあるが、摩耗形態としてはいずれも横切ぎ面および縦切ぎ面からノーズ部に向かって摩耗が激激に増大し、それに伴って丸みを帯びた帯状摩耗を呈している。

図 1,2 に見られるように、光学的観察においては丸みを帯びた摩耗部での反射が激しく摩耗状態の確認が難しいので、低倍率観察においても走査電子顕微鏡を併用した。その結果を図 3 に示す。図 3 の場合、図 1 および図 2 の光学顕微鏡写真の場合よりも摩耗領域が分かりようである。二種観察結果において、M 10, P 20 および黑色セラミック CB では前述の K 10 の場合と同様、いずれも丸みを帯びた帯状摩耗で、被削材との接触に

図 1 工具の損傷状態（その 1）（超硬合金系の場合）

図 2 工具の損傷状態（その 2）（サーメット系の場合）

表 2 使用工具の物理的・機械的性質

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness HRA</td>
<td>91.5 92.5 92.0</td>
</tr>
<tr>
<td>Transverse rupture strength MPa</td>
<td>1570 1470 1570</td>
</tr>
<tr>
<td>Compressive strength MPa</td>
<td>4710 4900 6080</td>
</tr>
<tr>
<td>Young's modulus of elasticity GPa</td>
<td>530 570 680</td>
</tr>
<tr>
<td>Thermal conductivity W/(m-K)</td>
<td>33.5 50.0 79.0</td>
</tr>
<tr>
<td>Coefficient of thermal expansion x10⁻⁶ 1/°C</td>
<td>6.8 5.5 8.0</td>
</tr>
</tbody>
</table>

* Estimated value from compressive strength, ** estimated value from data in other reference, *** average value of manufacturer's data.

1 MPa = 102 kgf/mm², 1 N/mm² = 0.102 kgf/mm², 1 W/(m-K) = 2.39 x10⁻³ cal/(cm·s·°C)
よるのと考えられる黒く着色した部分が光学的に観察され、帯状摩耗が大きいものほどノーズ部の摩耗が増大し三角形状摩耗に推移する様子が電子顕微鏡写真によって認められる。白黒セラミック CW 工具では三角形状摩耗がさらに顕著で、丸みを帯びた摩耗から比較的平面状の摩耗に変化している。サーメット系工具 TiC および TaN の場合、前述の TiN の場合と同様ノーズ部に摩耗が集中し異状に摩耗量の大きい三角形状摩耗を呈している。なお、摩耗部の一部で観察される溝状摩耗については後述の 3・5・3 項において考察する。

これらの摩耗形態は既報の GFRP 切削の場合とは多少異った傾向を示している。すなわち、GFRP 切削においてはいずれの工具材種においても速度（工具材種によって異なる）以上になると三角形状摩耗が現れるのに対して、CFRP 切削においては K10、M10、P20 および CB の場合かなりの速度範囲において顕著な三角形状摩耗が現れず、逆に CW、TiC、TiN および TaN ではかなりの低速域においても三角形状摩耗が観察される。き裂状損傷に関しては、GFRP 切削の場合、CW、CB、TiC および TiN の三角形状摩耗部に、はく離状欠けやき裂が発生しているのに対して、CFRP 切削ではいずれの工具材種においても観察されなかった。たとえば CB 工具で比較した場合、GFRP 切削では 300 rpm (39 m/min) でき裂が発生するのに対して、CFRP 切削では 1000 rpm (355 m/min) においてもき裂が認められなかった。

境界摩耗に関しては、CFRP 切削の場合低速になるほど、ときに前追い面境界摩耗の発達が著しいに対して、CFRP 切削においてはいずれの工具材種、いずれの主軸回転数においても境界摩耗は認められなかった。また、すくい面摩耗は CFRP 切削の場合と同じ、ほとんど切れ刃のように線付近の部分に認められるクレータ摩耗は認められない。

なお、CFRP 切削の場合、工具材種によって摩耗形態上の相違があるように見受けられるが、これは K10、M10、P20 および CB 工具では CFRP に対する摩耗性が比較的大小に対一次接触部のみがわずかに摩耗（以下一次摩耗と略す）し、二次接触領域が広いのに対して、CW、TiC、TiN および TaN 工具では摩耗性が比較的大小に対一次接触部の摩耗が激しく二次接触領域が減少したものと考えられる。

3-2 切削速度と摩耗率との関係 CW および P20 工具を用いて切削した場合の主軸回転数（切削速度）と摩耗率（切削距離当たりのノーズ部摩耗量）との関係を図 4 に示す。P20 の場合においては 3・1 節で述べた損傷状態が比較的明確な一次摩耗（工具成形面が完全に削除された領域）と、びっかき条痕を含む黒く着色した二次摩耗（工具成形面がほとんど残存する領域）をそれぞれ観察し、図 4 に併記した。いずれも摩耗領域が変化しているがその測定が難しく、概略の傾向を示すものと考える。P20 の二次摩耗幅は主軸回転数が増加するにつれて減少し、1000 rpm 以上ではやや増加の傾向を示している。一次摩耗の場合、600 rpm 付近まで主軸回転数が増加するにつれて増

図 3 工具の損傷状態（その 3）（低倍率電子顕微鏡写真）

図 4 切削速度と摩耗率との関係（その 1）
加し、その後は二次摩耗と類似の傾向を示している。したがって、一次摩耗と二次摩耗を比較した場合、低速域では両者の差が大きく、主軸回転数が増加するにつれてその差が減少し、600 rpm 以上ではほぼ平行に変化している。すなわち、二次的接触の領域は高速になるほど減少している。

白色セラミック CW の場合、その摩耗率は主軸回転数が増加するにつれて減少し、1,000 rpm を越えるとやや増加し、その値はやや小さいが、P20 の二次摩耗の場合とほぼ類似の傾向を示している。また、P20 の一次摩耗と比較した場合、低速域では CW のほうがかなり大きく、600 rpm 以上では両工具材種間の差が比較的少ない。

以上のように、CFRP 切削における工具摩耗特性は、GFRP 切削の場合とはかなり異なった傾向を示しているので、既報①の場合（工具材種ごとに臨界速度を求め、耐高速切削性を比較）と同一手法での比較検討は困難である。まだ、前述のように P20 などでは二次的な接触（二次摩耗）を生じているが、工具寿命の観点から、検討因子としては一次摩耗を採用すべきと考える。したがって、以下 8 種類の工具に対する比較検討には一次摩耗を用い、切削速度条件としては GFRP 切削の場合①（工具の性能に応じて変化）とは異なり、300,500 rpm および 1,000 rpm の同一条件下で摩耗率を求め、その結果を図 5 に示す。

CFRP 切削の場合、GFRP 切削における臨界速度のような全工具に共通した特性は見受けられず、前図 1-3 の工具損傷形状と考え合せると数種の異なった傾向を示している。すなわち、二次接触軸が極めて少なく、大きな一次摩耗を生じたサーメット系 3 種（TaN, TiN および TiC）においては主軸回転数が増加するにつれてほぼ直線的に摩耗率が増大し、サーメット工具に次いで一次摩耗の激しい白色セラミック CW の場合、逆に摩耗率は減少の傾向を示している。一方、二次接触軸が広く、一次摩耗が比較的小さく、かつ丸みを帯びた帯状摩耗を呈する白色セラミックおよび超硬合金系工具の場合、主軸回転数の増減に対してそれぞれ多少変化するが、その変化は前 4 者に比べると小さく、ほぼ一定値とみなされる。

また、CFRP 切削における工具材料の平均的性能序列は K10 が最もすぐれ、以下 CB, M10, P20, CW, TiC, TiN および TaN の順で、GFRP 切削時の序列①とは異なり、GFRP 切削で最も悪い性能を示した

図 5 切削速度と摩耗率との関係（その 2）

図 6 ノーズ部の平均摩耗率と工具材料の各種性質との関係（その 1）
3.3 工具材料の性質と工具摩耗との関係 工具性能の評価基準として、GFRP 切削では臨界速度を用いたが、GFRP 切削では単に同一速度で比較せざるを得ない。したがって、サメット系工具において異状に大きな摩耗を示した1000 rpmを除き、300 rpmと500 rpmにおける摩耗量を平均して以下に検討を行った。その平均摩耗量と工具材料の各種性能との関係を図6および図7に示す。図中の各種性能を、図6では既報39) GFRP切削の場合と同様メーク提示資料(表2)、図7の場合実測値である。工具材料の硬さHVと摩耗率との相関はGFRP切削の場合より強いが全体としてはその差が少なく工具性能の傾向把握には不便である。したがって、別にHV硬さを測定し図7に示した。HVもHVと摩耗率との相関がある程度認められるが、直線性はあまり良くない。

GFRP切削の場合、抗張力は熱衝撃に及ぼす性質の一つとして発熱損傷の有無に大きく影響するものと考えられるが、GFRP切削においては発熱損傷が観察されず、しかも摩耗率との相関が弱いことから、工具摩耗に与える影響が比較的小さいように思われる。また、抗張力と工具材料のじん性を表す因子としてHV硬さ測定時の圧痕周辺（4個）に発生するき裂の長さを測定し図7に示した。き裂長さも抗張力の場合と同様摩耗率との相関が弱く、工具材料の耐摩耗性向上に対する主要因にはなり得ないものと考える。

抗張力は工具摩耗におよぼす因子として一般に極めて重要なものと考えられている。既報39)でも述べたように、たとえばチル鋼鉄切削においては抗張力と関係にある常温硬さが工具摩耗に大きく影響し51), GFRP切削においては切削速度の増加とともに刃先とガラス繊維間の接触圧が増加するため刃先が摩耗しやすくなること52)から、抗張力を増加させることが耐摩耗性の向上に効果の大きいものと考えられている。

GFRP切削においても図6に示すように摩耗率と抗張力との関係が他の性質の場合に比べて相関が低いことから、特に重要な因子と考える。

熟伝達率の場合、GFRP切削においては、摩耗率が急激に増加し始める臨界速度との相関が極めて強く、耐高速切削率上位の主要因と考えられるが、GFRP切

図 7 ノーズ部の平均摩耗率と工具材料の各種性能との関係（その2）

図 8 ノーズ摩耗中央部の走査電子顕微鏡写真
炭素繊維強化プラスチックの切削における工具摩耗

前においては摩耗率との相関が弱い。なお、図 1～3において熱的損傷が観察されず、図 4～5においても GFRP 切削の場合に比べて工具摩耗に対する切削速度の影響が少なく、したがって、工具材料の熱伝導率は耐摩耗性向上の主な因子になり得ないものと考えられる。

熱膨張係数に関しても、GFRP 切削の場合、高密度ではなく離散状態が観察されていることから、耐熱性を向上させる因子として極めて重要な性質と言えられるが、CFRP 切削においても摩耗率との相関が深いことから摩耗程度に対する重要な因子と考える。

3.4 走査電子顕微鏡による摩耗部の観察
- 木材摩耗中央部の走査電子顕微鏡写真を、図 8 に示す。超硬合金系の K10, M10 および P20 が、工具の場合、全体として比較的平たんで、突出粒子間によりもぼみ部分がサーメット系工具に比較すると極めて浅い。また突出粒子の上部が比較的平滑で、その周辺部分がかさばっていることから、粒子表面が機械的に削り取られたものと考える。突出粒子の密度は細粒の K10 がもっとも密で粗粒の P20 がもっとも浅い。

セラミック系工具の場合、CB 工具では超硬合金系の場合と同様比較的平たんで、浅いぼみによってりん片状の横が形成され、さらに深い小さくぼけたものが点在している。CW 工具の場合、他の P10 の場合と異なり、粒子が大きく突出しがちにあった摩耗面を呈し、さらに被削材の樹脂部分を溶着しているように思われる。すなわち、CW の場合のみ GFRP 切削に類似している。

サーメット系工具の場合、いずれも比較的深いぼけたものが多数見受けられるが、既報⑬ GFRP 切削におけるノーズ摩耗および上記の CW に見られるようなざらつき摩耗とは異なり、外観的には光沢状のくぼみを呈している。なお、そのくぼみの外周部はそれぞれ丸みを帯びてだれに似た様相を呈している。

図 9 は図 8 における M10 および P20 の走査電子顕微鏡写真中央部を一部拡大したもので、硬質粒子の摩耗形状がさらにあげられ、すなわち、GFRP 切削においてはいずれの工具材質においても摩耗が激増する界面速度以上において硬質粒子が丸みを帯びて突出し、激しくぎりぎりした摩耗面を呈するものに対して、GFRP 切削では粒子の破壊が起こることなく、極めて平面的な摩耗面である。したがって、GFRP の低速切削においては、比較的平たんで、ひっつかい程度を有する摩耗面を呈し、そこでは硬質粒子の流れが見受けられるものに対して⑮、図 9 の場合認められない。

3.5 CFRP 切削時の工具摩耗に関する総合考察

3.5.1 工具材料・被削材の熱的特性と工具摩耗
- CFRP 切削における工具摩耗は既報⑰ GFRP 切削の場合と比較した場合、工具材料の性能序列に大きな違いが認められ、とくに GFRP 切削において最も悪い性能を示した低熱伝導率工具（セラミック系の CB および CW）の性能序列が CFRP 切削においては比較的上位にある。また、GFRP 切削においては図 10 に示すように工具材料の熱伝導率との相関が極めて強く、工具の熱伝導率は耐高速切削性向上の主な因子と考えられるのに対して、CFRP 切削においては摩耗率と相関が極めて弱い。さらに、GFRP 切削においては CB、CW、TiN および TiC の高速度域において熱き裂が発生しているのに対して、CFRP 切削においては GFRP 切削の 10 倍近い高速度域においてもき裂やはく離欠損が見受けられない。

これらの相違は被削材の熱伝導率の相違に起因するものと考える。すなわち、セラミックは共にエポキシ樹脂であるが、補強繊維が異なり、表 1 に示す資料から炭素繊維の熱伝導率はガラス繊維の 100 倍近くと推定され、かつ CFRP の熱伝導率は 4.19 W/(mK)。
GFRP の場合 0.3 W/(m·K) で、複合された場合においても CFRP のほうがかなり大きいものと考える。既報**でも述べたように、熱伝導率の小さい CFRP の場合、被削材はほぼ断熱状態にあるので、工具の熱伝導率が小さくなるほど刃先における切削熱の蓄積量が増加し刃先温度が上昇するのに対して、熱伝導率が比較的大きい CFRP においては、被削材側への放熱割合が増加して刃先における熱の蓄積が減少し、刃先温度に対する工具の熱伝導率の影響が小さくなるものと考える。また、CFRP に近い切削特性が予想される炭素電極の切削に関する報告**においても、各種工具の磨耗はいずれも切削速度が上昇するにつれてやや減少し、かつ切削温度の影響が少ないことが示されてい る。図 9 の電子顕微鏡写真においても、GFRP 切削**においては切削面が切削熱の影響により塑性変形したり、選択的に除去されるのに対して、CFRP 切削では切削熱の影響が比較的少なく、硬質粒子が機械的に摩耗しているものと考えられる。すなわち、熱伝導率中位の被削材の場合、工具磨耗に対する工具材の性質の影響としては熱伝導率以外の因子が支配的なように思われ、なお、さらに高熱伝導率材、たとえば鋼切削の場合、GFRP 切削の工具性能序列は全く逆の傾向を示し**、低熱伝導率工具ほど高性能を示している。

熱き裂発生の要因となる局部的温度差も被削材の熱伝導率に左右されるものと考える。すなわち、低熱伝導率材の GFRP 切削においては被削材・工具間接面内での温度こう配が大きいために熱き裂を生じやすく、高熱伝導率材の CFRP 切削においてはその温度こう配が小さいため、いずれの工具材種においても熱膨張係数の大小にかかわらず熱応力の発生が少なく熱き裂の発生が抑制されるものと考える。

3-5-2 工具材・被削材の強度特性と工具磨耗

工具材の抗圧力（硬さとほぼ比例関係）は一般に工具材磨耗との関係が深く、GFRP 切削**においては前述の熱伝導率に次いで重要であり、チル鉄鉬**切削においても第一義的要因として強調されている。CFRP 切削においても、工具磨耗の主因が機械的すき取り摩耗と考えられることから、その耐摩耗性は工具材の硬さ（抗圧力）または硬さとヤング率の比に左右されるもの**と考えられる。なお、抗折力または Hs 硬さ測定時のき裂長さは工具材のじん性を表す性質として一般に重要であるが、CFRP 切削ではその重要性が低いように思われる。
被削材間の摩擦率を比較した場合、CFRP 切削時の摩擦率は回転数 300 rpm において 20〜500×10⁻⁴ mm/m で、GFRP 切削時(1)の 2〜20×10⁻⁴ mm/m（臨界速度以下）に比較して極めて大きい。その理由としては両被削材間の強度差が考えられ、表 1 に示すように CFRP の強度は GFRP より大きく、とくに引張強さや弾性率の値が大きい。また、図 11 に示す切削抵抗の測定結果においても、(a) の CFRP 切削における低抵抗値と (b) の GFRP 切削に比較して大きく、さらに CFRP 切削の場合、鋼などの金属切削の場合と異なり主力(Fa)に比較して背分力(Fb)の値が絶対的に大きい。すなわち、CFRP 切削においては、GFRP に比較して纖維が破断に至らず、切り残された纖維は切れ刃下方に弾性変形し、工具逃げ面を擦過する割合が多くなるために工具摩耗が促進されるものと考える。このことは摩擦部の繊維観察において摩耗部下方に黒色の接触痕が認められることからも推察される。

3・5・3 溝槽摩耗 CFRP 切削においては他の被削材では見られない特殊な溝槽摩耗が観察された。低い摩擦率の場合、図 3 の電子顕微鏡写真においても一部現れているが、むしろ図 2 の光学的観察がより果実である。図 12 はその溝槽摩耗部の電子顕微鏡写真を一例として示したものである。TiN 工具の場合、溝の間隔が比較的等間隔で送りや被削材の積層間隔との相関も考えられるが、TiN と TiC とでその間隔が異なる、むしろ溝槽摩耗の発生端に比較的大きくぼんやり観察されることから、焼結時に発生した炭化し未炭化物の存在が主たる原因で、摩耗がこれらの欠陥部に集中したものと考えられる。この種の摩耗については CFRP の欠けに関する報告(13)においても一部示したが、前述の欠陥（見掛け上の欠）が比較的多い場合に発生しやすいようにと思われる。なお、CB および P 20 においても溝槽摩耗がわずかに認められ、K 10 においては全く認められていない。K 10 の場合、上述の欠陥が認められず、しかも図 8 において硬質粒子の分布が密なためと考えられる。

4. 結 論

CFRP 切削における工具摩耗に関する検討結果を要約すると次のとおりである。

（1）工具の損傷状態：CFRP 切削の場合とは異なり、全速度域において境界摩耗が観察されず、厚く離状欠けや引き裂も見受けられなかった。また、摩耗量が小さい場合、丸みを帯びた帯状摩耗、摩耗量が大きい場合はノーズ部に集中した三角形状摩耗で、一部の工具において黒く着色した次接触部が観察された。さらに、電子顕微鏡による摩耗部の観察結果から、硬質粒子の上面は比較的平たく、粒子の拔き起こしや塑性流動は極めて少ないように思われる。

（2）切削速度と摩耗率との関係：GFRP 切削の場合に現れた全工具材種に共通の摩耗率急増現象は観察されず、数種の異なった傾向を示すが、全体的には摩耗率における速度の影響は小さい。

（3）工具材の性質と工具摩耗との関係：被削材と工具の接触圧が工具摩耗に大きく影響するものと考えられ、これに抗する性質として硬さまたは抗圧力が重要である。なお、GFRP 切削において耐高速切削性改善に対して極めて重要な因子と考えられる熟伝導率は、CFRP 切削の場合摩耗率との相関が極めて弱く、工具性能におよぼす影響が著しく少ない。

（4）工具材の性能系列：本実験範囲内での平均的性能系列はほぼ K10, CB, M10, P 20, CW, TiC, TiN および TaN の順で、GFRP 切削においても同様に悪い性能を示したセラミック系工具の性能が比較的高い。

終わりに、本研究を行うにあたり実験材料の提供をしていただいた東レ・開発研究所の皆様に感謝するとともに実験にご協力いただいた宇部工業高等学校田戸保教教授に感謝の意を表する。

文献

（1）化学技術誌編集部, 化学技術誌 MOL, 18-7(昭 55), 73.
（2）鴨賀・ほか 2 名, 化工化学学会研究報告, 29-1(昭 55), 83.
（3）佐久間・橋戸, 機論, 44-381(昭 53), 1752.
（4）佐久間・橋戸, 機論, 46-408, C(昭 55), 990.
（5）佐久間・橋戸, 機論, 48-436, C(昭 57), 1938.
（6）伊藤保, プラスチックデータハンドブック, (昭 55), 工業調査会.
（7）河崎・ほか 8 名, 高温工学, (昭 40), 52, コロナ社.
（8）益田, 機論, 35-274(昭 44), 1383.
（9）長谷川・花緒, 機論, 34-266(昭 43), 1812.
（10）Takeyama, H., Trans. ASME, Ser. 87-3(1965), 359.
（12）佐藤・金旗の摩耗とその対策, (昭 45), 4, 電気学会.
（13）佐久間・ほか 2 名, 機械論, No. 828-3(昭 57-11), 81.
（質問）安 味 貞 正（武蔵工業大学）

（1）CFRP切削での、工具材質による磨耗形態の相異なる理由を、耐摩耗性の大小で説明しておられるのが、理解し難い。貴論文では、まさにこの耐摩耗性の大小が何に起因しているかが、問題なのではないのか。

（2）工具摩耗を摩耗率で整理しておられるが、切削距離と工具逃げ面摩耗幅との間には、直線関係が成立立っているかどうか、伺いたい。

（3）図6で各材料定数を単独因子として摩耗率との相関性を論じておられる点に疑問を感じる。すなわち、各材料を、それぞれ異なった組み、結合材によって構成され、それが極めて複雑なからみ合っていることと考えると、単独に各材料を単独因子と考えることには危険ではないか。たとえば「鉄切断の場合は低熱伝導工具ほど高性能を示す」との議論は、他の影響因子を無視した議論になっていると思われるが、いかがか。

【回答】

（1）磨耗形態の相異なる理由について、

ご指摘のように、二次接触境界における摩耗状態の大小の差で説明したことおよび二次接触境界をおもに摩耗と同様に摩耗形態として述べたことは適当ではなかったことに思われる。658ページの図10・17行における図は二次接触境界の幅と一次摩耗幅との差について述べたもので、一次摩耗の大小ある程度の関係があるので気に入られる。同1つ工件においても一次摩耗が増加することがって二次摩耗も増加するもので、摩耗が厚い場合はサーメット系ではほど一定かまたは減少し、超硬合金系ではその差が大きくないという。すなわち、刃先が比較的鈍い場合は、刃先に対する押し込み深さも深く二次接触境界が大きいのに対して、刃先が拡大するに伴って切削幅が大きく押し込み深さが減少するために二次接触境界（一次摩耗との差）が減少するものと考えられる。

なお、この二次接触境界はその接触幅が検出箇面に転写されているとは限らず、他論点の各点示のように、切り残し部材による摩耗值の大きさは工器具材質の親和性に左右されていることも考えられる。したがって、刃先の断面形状や親和性と二次接触境界との関係についてさらに詳細な検討を行いたいと考えている。

（2）切削距離と工具逃げ面摩耗幅との関係。

ご指摘の直線性の件については既報でも述べていたが、摩耗量が比較的小さい場合はほぼ直線的で、摩耗量が大きい場合はやや複雑の傾向を示しており、工器具性能の検討には工器具単体の摩耗量よりもある場合が多い、前者は摩耗変動、後者は切削時間がまた切削距離の定数値によって異なり、資料相互間の比較が難しいように思われる。本研究の場合、GFRPおよびCFRP両被削材の内・外径が異なり、切削距離を一定にした摩耗量などでは比較検討が極めて難しく、摩耗量のほうが取扱いが容易なように思われる。また、CFRP切削では摩耗量の測定が難しく、最終摩耗量の一定で比較するより数点の測定値から得られる摩耗量のほうが一定に化されていて比較が簡単なように思わせる。したがって、摩耗進行曲線は必ずしも直線ではないがこれらの研究ではすべて摩耗率で整理し、今後の検討（特殊材料では形状統一が困難）にとらえている。

（3）図6における単独因子と摩耗率との相関性、

ご指摘のように、各工具はそれぞれ異なった組み、結合材によって構成され、それが複雑なからみあっているものと考える。しかし、ある種の性質のみを変化させ他の変数を一定にすることは現実には極めて難しく、単独因子による検討に無理があるとは思っているが、さわめて概略の傾向を把握するために図6のような検討を試みた。この検討の価値においても耐摩耗性に対する影響がどう弱い因子の場合ある程度その傾向が現れるものと考える。したがって、必ずしも他の因子を無視したといえるのではなく、主な因子の影響を主目的としている。たとえば「鉄切断の場合は低熱伝導工具ほど高性能」という議論は他の因子を無視したものではなく、一般に耐摩耗性を持つ大きな硬度がある程度（同報告の場合Ra硬度が92.0〜94.0）であれば熱伝導率が耐摩耗性に対して大きく影響するものと考える。

本報の場合も各種性質の中でもとり扱い熱伝導率はGFRP切削の場合は影響を大きく、今後新しい工具材質を開発しようとする場合、熱伝導率への配慮はほとんど必要がある。他因子の検討に傾きできるということを対象に考えていると考える。

【質問】 隆部淳一郎（宇都宮大学工学部）

（1）切削抵抗による考察では、切削抵抗波形の比較による考察が加えて行うべきであると思う。

CFRPの切削抵抗波形および切りくず形状と比較、検討してご教示いただければ幸甚である。
炭素繊維強化プラスチックの切削における工具摩耗

（2）GFRPという新しい材料に対して、既存の切削工具検討のなかから適材を選ばるとともに、結論（4）の材種側のことがわたった。将来、最適な新しい工具材質を創作しようとするときは、どのような組成、組織の工具材質と言えばよいのか。

【回答】（1）（ii）切削抵抗の波形について

ご指摘の切削抵抗の波形に関しては、GFRP切削の場合既報においても一部を示しているが、CFRPの場合は物は本切削工具に対する研究もまだにないが、これは今後の課題としている。

これまでの観察結果から、その既往の傾向について述べると、両切削工具とも送り力および背力の変動が大きく、その変動幅は切削速度が増加するにつれて減少している。両切削工具間では、GFRP切削時の変動のほうが大きな値を示しているが、平均切削抵抗に対する変動割合で示すと、たとえば送り力の方法両被工とも10〜20％で、その変動割合には大きな違いはないように思われる。

この変動の主要因については、GFRP切削の場合に関しても既報において示している。すなわち、フィラメントワイヤー系ピンの端面を切削する場合、切削速度に対するガラス繊維の向きが層ごとに異なるため抵抗が大きく変動し、切削方向に対して順方向配列の層のほうが逆方向配列の層の場合より抵抗値が大きいことが確認されている。これらの結果から類推すると、CFRP切削における切削抵抗変動の主要因も切削方向に対する繊維配列方向の相違によるものと考えられる。

なお、この抵抗変動と工具摩耗との関係については、チッピングがほとんど認められないことから、この種の摩耗に対する影響は極めて少ないように思われる。定常摩耗に対する影響に関しては、GFRP切削においては切削方向と順方向配列の層では摩耗が極めて大きく、逆方向配列の層では逆に極めて小さいことから、それが認められている。CFRP切削の場合も同様の傾向を示すものと考える。

（ii）切りくずについて

GFRP切削における切りくず形状は、マクロ的にはすべて粉末状切りくずで、ミクロ的にはガラス繊維が成形時に塗りまされた線状切りくずと、長ささまざまな単一繊維が不規則に散在する分離状切りくずが観察されている。また、低速・高速いずれの場合も切りくずは連続することなく、高速になるほど短し基材と補強材があ散れて微細化する傾向にあるように思う。CFRP切削における切りくず形状に関する概要の観察結果としては、いずれも粉末状切りくずで、GFRPの場合とほぼ同様の傾向を示すものと考える。

ただし、CFRPのほうがGFRPよりも微細化しているように思われる。この微細化した粉末状切りくずが工具・切削工具間に介在するととき、工具摩耗を促進することは十分考えられるが、これらについては今後さらに検討したいと考えている。

（2）CFRP切削工具材の成分、組織について

CFRP切削工具材に対する指針については、本研究によってある程度の成果が得られたように思う。すなわち、GFRPに対しては既報において強さあるいは圧力は要求されると同時に、熟伝導率の影響が極めて高く、圧力などの改善過程において粘着率が低下すれば耐高速切削性が低下するという結果が得られたが、CFRP切削工具材としては工具摩耗に対する熟伝導性が影響比較的小さいことから、機械的性質（主として硬度あるいは圧力）の改善過程において、粘着率への配慮はそれぞれ必要ではないと考える。

特にこの成分および組織については検討していないが、今後さらに幅広、組合せ含め出し見掛け上の面の検討や耐熱性および耐熱性材料など、検討が必要と考える。これらは今後の課題として現在その準備を進めている。

【質問】上原邦雄（東洋大学工学部）

新しい工業材材の切削に関して、興味ある実験の結果が示されているが、下記2点につきご意見を伺いたい。

（1）サーメットの摩耗率が他の工具材よりも大きくなり、かつ速度依存性を示す理由を伺いたい。かなり、この硬質粒子群を含む非常に硬い炭素と反応するためとすれば、そのいずれのほうが可能性として大きか。

（2）二次摩耗（黒化部分）は、切り残された炭素繊維が工具斜面を覆ったあとは生じているが、もしそうであれば、この部分の大きさは、工具材と炭素との親和力を示す一つの尺度となると考えられる。一次摩耗と二次摩耗との相関が、工具材を変じて見ただ場合、どのようにになっているか伺いたい。

【回答】（1）工具材と炭素との反応の可能性について

TIC系サーメットの場合、結合材はNiおよびMoと考えられる。したがって、炭素との反応についてこの場合結合相との関係を検討するべきで、Moは不活性であるか、または逆に気流中（酸素のない状態）で高温で炭素と直接反応して耐火性で化学的に不活性な炭化物を形成するようであるが、本実験（空気中の作業）の場合形成そのものが難しいように思われる。取り形
炭素繊維強化プラスチックの切削における工具摩耗

したとしても融点が高く摩耗増の原因とは考え難いようにと思われる。また、Ni も炭化の可能性は特定条件下ではあるようであるが、一般には炭素との直接反応が難しく本実験範囲内での反応の可能性はほとんどないようにと思われる。

TiN および TaN 系工具の場合、硬質粒子としてのたとえば TiN の反応については、TiC が窒素ガス中で TiN となる例や Ti と炭素を直接反応させる際窒素ガスが存在すると TiN を生じ、TiC・4 TiN あるいは TiC\textsubscript{r}C\textsubscript{n}, という組成の混晶を作る例はあるようであるが、TiN が炭素と反応して TiC となる例は見当たらなかった。かりに反応としても本実験範囲内ではかなり難しくなるように思う。なお、BN は 2000℃以上で分解して酸素がなければ炭化物を生じることもいわれるが、このことからの類推は難しく、TiN や TaN の反応についてはさらに検討したいと考える。結合材として添加される金属についてはその成分が判明していないが、TiC 系の場合と同様可能性が低いと思う。

以上のことから、サーメット系工具における炭素とその反応についてはいずれがその可能性が大きいかといえば結合相のほうが強いようと思うが、工具摩耗が大きいことの要因としてその可能性が低いように思う。これらの点についてはご教示のことを参考にして今後さらに詳細な検討を行いたいと考えている。

（2）一次摩耗と二次摩耗の相関について

CW については電子顕微鏡観察のためにほどこした金蒸着処理後において多少認められたが、工具顕微鏡による摩耗測定中には確認できなかったので CFRP との親和性という意味においては CW がもっとも低いいようにと思われる。また、二次摩耗幅も切削速度によって変化し、一次摩耗が増加するにつれて増加するので、CW 以外の工具については摩耗率の場合と同様 300 rpm および 500 rpm における 7 回切削後の二次摩耗幅の平均値で示すと CB, P 20, K 10, M 10, TiC, TiN, TaN の順に大きく、それぞれ 0.524, 0.524, 0.670, 0.780, 1.132, 1.450, 1.640 mm となっている。

一次摩耗の大きいサーメット系の二次摩耗が他工具材に比較して大きくて、同系列内では一次摩耗の大きい工具材ほど二次摩耗が大きくなるが、セラミックス系および超硬合金系工具では必ずしも一次摩耗の順になっていないように思われる。すなわち、ご指摘の親和性和二次摩耗との相関、あるいは二次摩耗と一次摩耗との相関がある程度考えられるが、本実験範囲内では比例的関係までには至っていないように思われる。しかし、二次摩耗の測定そのものが難しいことやサーメット系の一部では一次摩耗と二次摩耗との値がほぼ等しいなどを考慮すると本実験範囲内で結論づけることは難しく、ご教示の点を参考にして今後さらに詳細な検討を行いたいと考えている。

【質問】 田中亜一郎 (金沢大学工学部)

機械的すきとり摩耗はどのような摩耗を意味しているかを伺いたい。

【回答】 ご質問の機械的すきとり摩耗の意味についてはこの報告の場合の独自の意味があるうえでなく、一般に機械的摩耗 (Abrasive wear) として理解されているもので指している。これは、場合によってはすきとり摩耗あるいはひっかかり摩耗などと呼ばれていっているように思う。

すきとり摩耗とは「正常摩耗とも呼ばれ、摩擦熱の発生が少ない場合で、加工材中の硬質粒子が工具から掛け落ちた微小粒によって引きかえ、さらに微小単位の脱落が起こる」などと解され、ひっかかり摩耗もほぼ同様の意味に用いられている。この報告における機械的すきとり摩耗は比較的切削熱の影響が少なく、被削材中の硬質繊維や切りくず中の微粉によるひっかかり作用によって摩耗が進行するものと考える。したがって、この場合にすきとり摩耗あるいはひっかかり摩耗と称してもよいように思う。