Behavior of Self-Excited Vibration in Cutting and the Phase Characteristic

by Naoto KASAHARA and Hisayoshi SATO

Behavior of the self-excited chatter in cutting was investigated from the viewpoint of space phase, which is the one observed between outer and inner modulation. A data acquisition and analysis system using personal computers was developed, which is possible to store vast amount of digitized signal and to process these. Records of oscillation for the horizontal motion of the work and that for the horizontal component of the cutting force were stored. For the variation of the rotational speed it was newly found that the amplitude of the vibration increases for decreasing rotational speed and vice versa, and the amplitude of the cutting force does not increase as that of the work does. Amplified and damped amplitudes for the decreasing and increasing rotational speed are shown closely related with decreasing and increasing space phase. The rather constant cutting force inspite of the variation of the work displacement shows good correlation with the cutting area given by the difference of the successive displacement.

Key Words: Manufacturing Technology, Self-Excited Vibration, Rotational Speed, Cutting Area, Cutting Force, Multiple Regenerative Effect, Phase

L: $D_{x,b}$ の計算に際し, 位相に関連しているデータ個数
L': $D_{x,b}(L')=0$ を与えるデータ個数
l': $D_{x,b}(l')=\min$ を与える L' の補間値
M: $D_{x,b}$ の計算に用いるデータ個数
N_r: 計測結果で何回転なのかを表す数
outer: 隣り合う回転の x のうち一回転前のもの
inner: 隣り合う回転の x のうち現回転のもの
A_r: 切削面積
A: 振動時切削面積の定常切削時切削面積に対する比

1. ま え が き

切削時に生ずる自励振動の問題には、これが加工能力の向上を制限する方向で発生することから、発振帯を明らかにする安定判断に関して多くの研究が進められてきた。ことに加工で自励振動の発生をきけるのは当然のことであるが、一方、粗加工や加工部品の機能面から許容される場合には、その発生にかかわらず加工が継続されている場合も少なくない。本研究は、このような状況に対し、生産技術上、作業継続の可否の判断に関与し、振幅の予測を可能にするた
切削時の自励振動の挙動と位相特性について

本研究では、旋盤の主軸径につけたロータリエンコーダに同期し A-D 変換された振動波形を、大量にマイクロコンピュータにとりこみ処理する装置を製作し、回転速度の変化を示した。それが各軸の状態を観察し、前記状態を観察した。これらと振動波形、再生機能の発生状況などの点から振動の挙動を観察し、従来知られていな

図 1 背面方向の振動系モデル

図 2 自励振動計測処理システムの流れ図

の研究の一環としてなされたものである。著者らは、これまでに自励振動発生後の一挙動について調べ、それが多重再生効果とよばれる現象によって準確な表現できる結果を指摘しています。さらに、振動にともなう音発生も説明できることを明らかにしてきた。このため、本論文で空間位相を含む、被削材の非回転に対して生ずる振動の位相の観察を試み、90°~110°の間にはばらつくことを示したが、振動の挙動の関係は明らかでなかった。また、本論文で空間位相とよぶ、切削力と被削材変位の間の位相についても、空間位相との相互関係、振動の挙動への影響などについては明らかでなかった。

本研究では、装置の主軸径につけたロータリエンコーダに同期し A-D 変換された振動波形を、大量にマイクロコンピュータにとりこみ処理する装置を製作し、回転速度の変化を示した。それが各軸の状態を観察し、従来知られていなない現象の発生を指摘した。この際、工具先端位置の可視化などにより、その機構についても考察した。

なお自励振動時に、回転速度を変動させて防振することについては、すでに研究があるが、本研究はこれからもとづきつつ、より明確な振動の挙動の解明と効果的な防振策の模索を意図している。

2. 測定系とその機能

これまでの研究において指摘されているように、主として被削材が振動する旋盤時の自励振動では、主力と背力方向の合成された方向に振動するが、本研究では切込み方向の特徴が顕著な、図 1 に示す背力方向の挙動に注目して出した。被削材の変位は、パイリが背力方向に、その主軸の工具台からの相対変位、切削力は、それぞれ、

"電流変位計" Kanmann K23001S
"動力計" Kistler 2575A
を用いている。また、端盤は大錦鉄工所 LS450x500 無段変速機付超光分巻モータを用いている。

図 2 は、本研究で対象とする 3 個の観測、x, f, Ω を、主軸軸端によりつけられたロータリエンコーダからの出力波形によって A-D 変換したもの、マイクロコンピュータ PC9801 [日本電気(株)] 内の記憶装置にとりこみ、解析に必要な数値を計算処理して求めるシステムの概要を示している。PC9801 [日本電気(株)]は、PC8001 とデータの記憶と演算処理に専用化できるように、データの取り込みと転送を分担し、システム全体として機能の向上をはかっている。
が発生している状態では、被削材にこのこん線が残されるが、被削材が一回転した時、同じ角度位置でみれば一回転後の振動こん線には空間位相 ν が存在する。まず f_s の決定は、$D_{ka}(j)$ を

$$D_{ka}(j) = \sum_{i=1}^{n} [x_k(i\Delta\phi) - x_k((i+1)\Delta\phi)]^2$$

$$(j = 0, 1, \ldots, L)$$

として評価する時、以下によって求められる。すなわち、

$$D_{ka}(0) = 0$$

となった後、$L' < L$ なる $j = L'$ にたいして、再び

$$D_{ka}(L') = 0$$

が $j = 0$ の後で最初に満足されるとすると、$j = L' - 1, L', L$ の 3 点に対して二次曲線近似の補間によって

$$D_{ka}(l') = \min$$

なる l' が求められる。これより、T_s, f_s, f_a は、

$$T_s = l'\Delta\phi$$

$$f_s = 2\pi/(l'\Delta\phi)$$

によって求められる。一方、ν については、

$$D_{ka+1}(j)$$

を、

$$D_{ka+1}(j) = \sum_{i=1}^{n} [x_k((i+1)\Delta\phi) - x_k((i+2)\Delta\phi)]^2$$

$$(j = 0, 1, \ldots, L)$$

として評価し、$L' < L$ なる $j = L'$ にたいして最初に

$$D_{ka+1}(L') = 0$$

が満足されるとすると、上記と同様の過程によって

$$\nu = l'\Delta\phi$$

として求められる。

時間周波数 f_a は、Q, f_a が求められているから、

$$f_a = f_aQ/60$$

の計算によって導かれる。また、時間位相 θ は、f_a と x に式 (5) 以下の過程を適用することによって同様に求められる。

表 1 切削条件

<table>
<thead>
<tr>
<th>Rotational speed</th>
<th>400-600 min⁻¹ (variable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed</td>
<td>0.05 mm/rev</td>
</tr>
<tr>
<td>Depth of cut</td>
<td>0.5 mm</td>
</tr>
<tr>
<td>Tool bit</td>
<td>Tip radius : 0.4 mm</td>
</tr>
<tr>
<td></td>
<td>Angle of side cutting edge : 0.79 rad</td>
</tr>
<tr>
<td></td>
<td>Make angle : 0.10 rad</td>
</tr>
<tr>
<td></td>
<td>Material : Tungsten carbide</td>
</tr>
<tr>
<td></td>
<td>Type : SN6-431C</td>
</tr>
<tr>
<td>Work</td>
<td>Material : Brass</td>
</tr>
<tr>
<td></td>
<td>Hold condition : Chucked only at on end</td>
</tr>
<tr>
<td></td>
<td>Diameter : φ30 mm</td>
</tr>
<tr>
<td></td>
<td>Effective length : 300 mm</td>
</tr>
<tr>
<td></td>
<td>Natural frequency : 156 Hz</td>
</tr>
<tr>
<td></td>
<td>Stiffness to horizontal direction at free end : 2N/mm</td>
</tr>
</tbody>
</table>

図 3 空間位相の説明図

図 4 時間位相の説明図

図 5 回転速度変動時の挙動
典型特な挙動に注目する。
図5は、500〜700 rpmにおける挙動を示したものである。図5(a)に示されると、振幅が580 rpmで、図5(b)のx、図5(c)のF_νに振動がおこっているが、475 rpmに振動する過程でxは増大し、速度が低くなるとxは増大し、まとまって400 rpmに振幅が抑制され、再びxは増大する。その後で、図5(d)のF_νは増大し、580 rpmの振幅で振動が抑制される。これにより、xは次第に変化し、これは1つの単位でないことが示されている。

これらの挙動は、図示の条件で再現性のある現象であり、これらから、

(1) 減速過程と低い速度で変位振幅が増大し、形状振動で顕著に変位振幅が抑制されること。

(2) 切削力の振幅は変位振幅が変化してもほとんど変わらないこと、

という挙動が従来の知見とはずしも一致しないこととして指摘される。以下では、これらの点を配慮しつつ、空間振動、時間振動、再生効果などを考慮に入れた検討を試みる。

図5(d)以下では、f_w、f_o、ν、θの挙動を調べ、ω、x、F_νの変化に対応させて示している。これらの諸量は相互に関係し合っており、厳密には詳細な検討を要するが、図示振動の振動数が固有振動数に近く、比較的一定に保たれていることを考慮すれば、ωの変化の影響を直ちに示すのは、f_w、f_oであるといえる。図5(e)、(f)の挙動はこれをよく示している。一方、図5(b)によれば、θはxが非常に大きくなった時に最も大きく変化し、他の状態ではほとんど変化が生じていない。

図6には、数値において同じ角度位置のxを示すに、工具刃先位置を重ねて示しているが、斜面部のAが数値におけるxの動きによって決まることが示されている。この多重再生効果が何回転にわたって生じているかは、被削材表面における各回転ごとの切り口の位置関係を調べることによって可能である。図5(b)にはその発生状況を示したものであり、これによれば通常で2回、最も大きい場合は4回になっていることが示されている。

図7、8は、減速時、増速時のxの波形を数回転にわたって示すものである。図示の波形を観察したものである。減速時には、νが減少し、波形が急激に小さくなってきた。同時に振幅が増大している。一方、増速時には、波形の急激な右方向へ流れ、νが大となっており、これによって振幅が減少し、急激に小さくなくなったところで収束を生じている。

図9、(a)定速時、(b)減速時、(c)増速時に対し、xとF_νの関係をラシージュ計として示したものである。これらはすでに示されているように、(a)時計まわりの周波数である。図9にはこれを示印で示している。図示の波形をふくらみが減速時、増速時に対してそれぞれ大、小となっているが、すでに指摘したように、この時F_νはあまり変化せず、xのみが変化している。表3には、これらに対するν、θを整理しているが、ν、θは減速、増速に対して両者ともそれぞれ、減少、増大する傾向にあり、特にラシージュ計のふくらみは、θが直接的に影響している。一方、vの減少は減速時に顕著であり、後述の切削面積の関係で間接的にラシージュ計の形状に関与しているとみられる。現象
（1）に関しては、このような位相特性と関連において、現象の一端が理解される。

図10は（a）定速時、（b）減速時、（c）増速時のそれぞれを対象に、同一回転角度位置について、実験で得られた回転分のxを左端に示し、中央には、これに基づいて工具先端の動きを連続的・断続的に示している。その右隣りには、工具先端の相対的な位置関係から、斜線部分で示した切削面積Aを定常切削時の切削面積に対する比A_rとして表示している。ただし、ここでは、多重再生効果の発生と、工具刃先半径とを無視した状態での切削面積を求めている。

工具刃先の挙動から、一回転前の工具軌跡で削っていった所に、次の回転での工具がかからない、Aが零になることが可視化されている。右隣の波形F_hにたいし、A_rの波形は基本的によく対応していることが観察される。すでに指摘した現象の(2)を考えると、F_hがAに存在して決まるものとすれば、減速時に振幅が増大しても、νが小となれば、隣り合う回転の刃先位置の相対的な差として求められるAが、他の場合と余り変わらなくななることから、この間の現象を説明することができる。

4. す \ な \ び

旋削時の自励振動の発振後の挙動について、空間位相との関連を明らかにするべく、回転速度の変化に対

表2 回転速度の変化に対するν, θの変化

<table>
<thead>
<tr>
<th>Speed</th>
<th>Constant</th>
<th>Decreasing</th>
<th>Increasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>1.55</td>
<td>0.39</td>
<td>1.92</td>
</tr>
<tr>
<td>θ</td>
<td>2.64</td>
<td>2.05</td>
<td>2.77</td>
</tr>
</tbody>
</table>

unit：rad

図9 振動変位と切削力のリサーシュ図

図10 切削面積と切削力
切削時自動振動の挙動と位相特性について

して特性を調べた。このため、パーソナルコンピュータ2台を用いた計測システムを構成して、振動発生時の全体の挙動を測定の後、測定時の回転位置を指定して、振幅、切削力、時間周波数、空間周波数、時間位相、空間位相、切削速度など各種のパラメータを処理、表示しやすいようにした。この結果、
（1）回転速度の減少、増加の過程に対し、空間位相は、減少、増加し、これが、振動振幅を増幅、抑制する結果になっていること。
（2）変位振幅が増大する場合にも、切削力はそれほど増加しない現象がみられるが、これは空間位相が減少する結果、切削速度が変位振幅ほどに増加しないことと関連づけられること、などの新たな知見をえた。

本研究をすすめるにあたり、谷本弘正教授からは貴重、かつ有益な討議をいただいた。実験の遂行、データの整理には大師真敬助手、尾高広雅技官、鈴木英佐子事務管、山田直志君、荒井康雄君の助力をえた。記して深甚の謝意を表する。

文献

（5）近藤・河野・佐藤・黒崎、多重再生効果を考慮した自動振動の挙動について、機論, 46-469, C (昭55), 1024-1032.
（6）金子・佐藤・谷・大場、旋削時自動振動と旋削面の振動成分について、機論, 50-454, C (昭55), 961-968.
（7）竹村・北村・黒、主軸回転速度変動によるびびり振動の防止、機微, 41-5, (昭50), 489-494.
（8）柳村・佐田、変動主軸回転数下の切削荷の安定解析、機微, 43-1, (昭52), 80-85.