こう配歯がりばかり歯車の歯切法に関する研究*
（基礎理論および設計例）

田村久司**, 酒井高男***
Hisashi TAMURA, Takao SAKAI

Key Words: Gear, Gear Cutting Method, Spiral Bevel Gear, Tapered Tooth Height, Point Contact Gear, Gleason Hypoid Gear, Tooth Bearing

1. 論 言

まがりばかり歯車は、すぐばかり歯車よりも歯のかみあい状態がよく、歯も強く、かみあい率も大きくすることができ、高速高荷重運転に適している。したがってまがりばかり歯車の運転性能向上を計るならば、積極的にまがりばかり歯車を採用するのが望ましい。

わが国では円弧に近い歯すじをもつグリーソン式がまがりばかり歯車が最も多く用いられている。この方式のまがりばかり歯車では、歯をこう配歯にすると歯全体の形が自然になり、理想的であるが、良好な歯当たりを得ようすると、等高歯の場合に比べて、その歯切りが格段にむずかしくなる。その後は、単に和栗は、グリーソン方式のまがりばかり歯車では万難を排して等高歯にすべきであるとしている。

本報で提案する歯切法は、グリーソン式こう配まがりばかり歯車で歯当たりをよくするため、はじめから小さな相対曲率で点接触する歯車対の歯切りを目指し、歯切盤へのカッター取付けが容易にかつ正確に実現できる。従来の方法はこのカッター取付けに関して、理論的においまいさがあった。

本法は、従来のグリーソン式カッターにわずかな修正を施し、そのカッターで円弧に近い歯すじをもつ二対のこう配まがりばかり歯車を得るための創成歯切法である。このとき、クラウニング量を外刃と内刃の回転半径差によって生じるそれにすれば、修整カッター1個でギヤとピニオンの両方を歯切りできる特長がある。

カッターの修整にはそれほどの困難を伴うものではない。ここで得る歯車対は、クラウニングと歯形修整を同時に行なった形の歯面をもつまがりばかり歯車であり、機構学的には高速比の点接触歯車になる。しかしその程度はこれまでのご配歯まがりばかり歯車と同程度であり、実用上無視できる。

2. 基本的な考え方

一方のまがりばかり歯車の歯切りを考える場合、フォーメイト法に代表される直接作成法的な考え方によるものと、仮想冠歯面を媒介にした間接作成法的な考え方によるものがある。ここでは後者の考え方にしたがう。

グリーソン式まがりばかり歯車では、ギヤ歯断面仮想冠歯面Xgとピニオン歯断面仮想冠歯面Xpは、フェースミル形カッターの刃先がカッタ軸まわりを回転することによって形成する円すい面である。

図1 グリーソン式カッターと被削かき歯車
ここでは \(x_2, x_3\) などの添字が \(y, p\) はそれぞれ、ギヤ、ピニオンに関することを意味するものをとる。

図1にグリーン式フェースミル形カッタの切れ刃「直線」が形成する円すい面と被削歯車の関係を示す。図1で \(Oxyz\) は静止座標系である。 \(y\) 軸は仮想冠歯車のピッチ面と各歯車のピッチ円すいとがたかいに接しゆるいわゆる pitch element で、 \(x\) 軸は仮想冠歯車の回転軸（グレードル軸）に一致している。 \(O_x-x_y- \alpha_2\) はカッタに固定した座標系で、 \(z_2\) 軸がカッタ軸である。ギヤは \(z > 0\) の領域でピニオンは \(z < 0\) の領域にあるものとする。

さて、このカッタを用いてこう配歯かき歯車を歯切りしようとするとき、カッタ刃先が被削歯車の歯底を削ることないようになければならない。そのためにはカッタ軸 \(z_2\) を仮想冠歯車軸 \(x\) に対して、被削歯車歯元角 \(\alpha_2\) あるいは \(\delta_2\) に相当する角度に傾ける必要がある。角度 \(\delta_2\) の傾く方向は \(\delta_2\) のそれと逆である。よってギヤとピニオンはそれぞれ異なった歯面をもつ仮想冠歯車で歯切りされることになる。このような状態で歯面 \(X_2\) と \(X_3\) の法線が点 \(P\) 一致しているとしても、それらがともに円すい面であるため、その点で図2 (a) に示すような状態になっている。ゆえに、それらが形成するギヤとピニオンの歯面どうしは干渉し、これがグリーン式こう配配قدمけがき歯車で良好な歯当りを得ることのできない原因である。

等高歯かき歯車の場合同に、同じ仮想冠歯車歯面でギヤとピニオンを歯切りできるから、結果としてよい歯当りを歯車対を得ることが容易になる。和ら(8) はこの点を指摘しているのである。

グリーン形カッタは内側切れ刃と外側切れ刃とからなり、切れ刃はともに直線である。これらの直線はいずれもカッタ軸と交わり、これが円すい面を形成する。直線がカッタ軸と交わるため、それらの形成する回転面は回転曲面となる。

本研究で提案するカッタは内側切れ刃を円弧にし、これをカッタ軸まわりに回したときに得る回転曲面（その特別の場合である円すい面も含む）を一つの歯車の歯面用仮想冠歯車歯面として用いる。相手歯車歯切用仮想冠歯車歯面には回転曲面（その特別の場合である円すい面も含む）を用いることにより、もちろん外側切れ刃を円弧にし、内側切れ刃を直線のままにしておく構成あるいは内・外切れ刃ともに適当な曲線にする構成も考えられるが、いずれの場合にも以下の議論がそのまま適用できる。

つぎに、このカッタを仮想冠歯車に取付けその歯面とするが、取付け方はこれまでのこう配かき歯車の歯切りの場合と同じ考え方にによる。すなわち、図1の \(y\) 軸（pitch element）上で、平均円すい距離 \(R_2\) の点を設計基準点 \(P\) に選び、 \(P\) で仮想冠歯車歯面 \(X_2\) と \(X_3\) の各法線が「あらかじめ定められた方向」に正しく一致するように、 \(X_2\) と \(X_3\) を仮想冠歯車空間に配置する。ただし、 \(X_2, X_3\) の主軸である各カッタ軸は、図1の \(yz\) 面で平行な平面内で、対応する被削歯車歯元角 \(\delta_2\) に相当する角度も仮想冠歯車軸に対して傾けたのち、さらに各カッタ軸を \(y\) 軸まわりに回転し、それぞれ角度 \(\alpha_2, \delta_2\) 傾けるものとする。角度 \(\delta_2\), \(\alpha_2\) はいまのところ未知であるが、点 \(P\) で \(X_2, X_3\) の各法線を定めた方向にするとという条件から決まるものである。

ところで、異なる2曲面 \(X_2, X_3\) が点 \(P\) で法線を共有するということは、それらの曲面が点 \(P\) で接しているということである。そして、その接触は一般に点接触であり、目的的には図2に示された三つの接触形態が考えられる。図2 (b) は線接触の場合である。

仮想冠歯車歯面となる曲面 \(X_2\) と \(X_3\) は図2 (b) か図2 (c) の状態にあて、それぞれの曲面を創成すばよい、被削歯車歯面 \(X_0\) あるいは \(X_0\) に対して \(X_2\) あるいは \(X_3\) の反対側にあるものとする。

さて、以上の \(X_2, X_3\) の配置条件からはこれら三つの形態の区別ができない。そこでこれを区別するため横田の示した相対全曲率(9)を用い、図2 (a) の状態が生じたときには切れ刃の曲率半径を変える。

仮想冠歯車歯面である \(X_2\) と \(X_3\) はつねに一つの点で接触しており、それらの間に相対運動はない。したがって \(X_2, X_3\) によって創成されるギヤおよびピニオンの歯面どうしは、機構学的には非定速比の点接触かみあいをすることになる。しかし、この非定速比点接触かみあいは従来の歯切法による歯車対にかみあいと大差はない。なぜなら、仮想歯車は従来のカッタをわずかに調整して歯切りすることにしているので、被削歯車の歯形修整量もわずかで、またクラウニング量もほぼ同程度であるからである。よって、本歯切法で得る歯車対の非定速比点接触かみあいは、歯のたわみとか歯面の弾性接触変形などと関連づけて考え

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{仮想冠歯車歯面 \(X_2\) と \(X_3\) の接触形態}
\end{figure}
3. 切れ刃が形成する曲面

ギリソーン式まがりばかし歯車創成歯切盤の創成原理は仮想歯車歯車ギヤおよびピニオンを創成歯切することができ、本歯切法もそれにしたがう。ギヤおよびピニオンの歯切りは同一方向でおこない、歯切盤へのカッタセンサティン（マシンセンサティン）は、ギヤで1回、ピニオンで2回とする。本章および4章ではこのことを考慮しつつ議論する。

2章ではギヤ歯切用仮想歯車歯面を\(X_p\)、ピニオンのそれを\(X_p\)、本章ではそれを数式表示するための準備として、カッタに固着した座標系\(O_c-x_cy_cz_c\)で切れ刃の形成する曲面の式を導く。図1にこの座標系が示されている。カッタ刃先は\(x_cy_cz_c\)平面上にあるものとする。なお、添字\(c\)はカッタに関することを意味する。

さて、切れ刃の形成する曲面を列ベクトルで表示し、ギヤ凸歯面歯切用曲面を\(X_p\)、ピニオン凸歯面歯切用曲面を\(X_p\)で、またギヤ凸歯面、ピニオン凸歯面に対するそれらをそれぞれ\(X_p\)、\(X_p\)で示す。以下ギヤ凸歯面とピニオン凸歯面に関しては「、「をつけて区別する。

図3にカッタ切れ刃の形状を示す。このカッタは、ギリソーン式の呼び名によれば、カッタ半径\(r\)、圧力角\(a\)、カッタ番号\(C\)、ポイント幅\(W\)である。カッタの外側切れ刃および内側切れ刃の傾きをそれぞれ\(\gamma_1\)、\(\gamma_2\)

\[
\sin \gamma_1 = a - 0.002909C \tag{1}
\]

\[
\sin \gamma_2 = a + 0.002909C \tag{1}
\]

図3の座標系で、\(v\)を数値とすれば、カッタ外側切れ刃の直線は次式で示される。

\[
y_a = v \sin \gamma_1 + R + 2/2 \tag{2}
\]

\[
z_a = -v \cos \gamma_1 \tag{2}
\]

また、内側切れ刃の直線を円弧に整修し、\(\theta\)を数値、\(r\)を円弧の曲率半径、\(y_a\)、\(z_a\)を円弧の曲率中心Dの座標とすれば、

\[
y_a = r \cos (\theta + \theta_a) + y_0 \tag{3}
\]

\[
z_a = r \sin (\theta + \theta_a) + z_0 \tag{3}
\]

\[
\tan \theta_a = z_a/(R - W/2 - y_a) \tag{3}
\]

曲率中心Dの座標\((y_0, z_0)\)は設計値を用いてもよいが、正確を期すならば切れ刃を測定し、それから得る値を用いたほうがよい。

外側切れ刃および内側切れ刃の形成する曲面を表示するため、\(O_c-x_cy_cz_c\)に図3の\(y_a\)平面を導入する。このとき\(z_c\)軸と\(x_c\)軸とが平行で、距離\(a\)にあるようにする（図4）。\(a\)をハイパボロイド係数ということに。図4で、数値としての角度\(\phi\)を変化させ、\(y_a\)平面に上記の曲線が\(O_c-x_cy_cz_c\)に描く軌跡を求めたが、これが切れ刃の形成する曲面になる。図4より、

\[
x_c = a \cos \phi - y_a \sin \phi \tag{4}
\]

\[
y_c = a \sin \phi + y_a \cos \phi \tag{4}
\]

\[
z_c = z_a \tag{4}
\]

式(2)～(4)から、ギヤ歯切用曲面\(X_p\)，\(X_p\)とピニオン歯切用曲面\(X_p\)，\(X_p\)は次ページの式(5)で示される。式中の\(\psi_0, \psi_0, \phi_0, v_0, u_0, \theta, \theta_0, a_0, a_0\)はそれぞれ図3、4における\(\psi, \phi, v, u, \theta, a\)と同じ意味をもつが、各曲面の仮想歯車への配置の仕方がそれぞれ異なり、これらを区別する必要があるためにこのようにした。式(5)で\(a_0 = 0\)とおけば、それらは円すい面および円すい面に近い擬円すい面になる。

ギリソーン式まがりばかし歯車では、切れ刃の形成する曲面は円すい面とか擬円すい面に固定している。本研究では設計自由度の多様性を考え、切れ刃
に傾きを与え、歯車のかみ合い状態評価の可能性を期待したものである。その一例として回転双曲面を考えた。この場合、図3を参照すれば、(5)式においてカッタ刃先は$v=0$あるいは$d=0$である。この刃先を被削歯の歯底円すいに接しさせれば、設計基準点Pにおける各曲面の径数 v_a, v_b, d は次式で計算される（図5）.

$$
\begin{align*}
 h_a &= v_a \cos \gamma, \\
 h_b &= v_b \cos \gamma, \\
 h_d &= r \sin(\theta_a + \theta_b) - z_a
\end{align*}
$$

ここで

$$
 h_a = R_a \sin \delta_a, h_b = R_b \sin \delta_b, \quad \text{・} \quad \delta_a \quad \text{・} \quad \delta_b
$$

X_{sc} の径数 θ_b は求める必要がない。その理由は、1回のマシンセッティングでジグの凹凸両面を加工することにしているので、カッタ外側円すいである X_{sc} の仮想対面での加工の仕方ができれば、内側円すいである X_{sc} の位置もでき、したがって θ_b は、いまのところ未知であるが、きまってているからである。

4. 仮想対面歯車

式(5)で示したカッタ切れ刃の形成する曲面を、それぞれの場合に応じて、仮想対面歯車空間に配置するならば、ここにジグおよびビニオンの各曲面を削成するための仮想対面歯車が完成する。本章では仮想対面歯車への、これらの曲面の配置法についてのべるが、X_{sc} と X_{sc}、X_{sc} と X_{sc} に合わせて考察する。また、議論はすべてO-xyzで示すことになる。

4-1 ジグ凹面とビニオン凸面の曲面切削対面歯車

仮想対面歯車は歯車の軸のまわりに回転することによって対面歯車に対する成形運動を实现するが、それが基準の位置にあるとき、すなわち側面が車のとき、図1に示すように、仮想対面歯車面となる X_{sc} と X_{sc} の主軸は yz 面に平行な平面内でそれぞれ角度 δ_a, δ_b 傾き、さらに図1に示していないが各軸を y 軸まわりに回転してそれぞれ角度 δ_a, δ_b 傾けする。

この状態の X_{sc}, X_{sc} をO-xyzで示すと、A, B を座標変換行列、D_a, D_b を列ベクトルとして、

$$
\begin{align*}
 X_a &= B(\delta_a)A(\delta_a)X_{sc} + D_a \\
 X_b &= B(\delta_b)A(\delta_b)X_{sc} + D_b
\end{align*}
$$

ことに

$$
\begin{align*}
 A(\delta) &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \delta & -\sin \delta \\ 0 & \sin \delta & \cos \delta \end{pmatrix} \\
 B(\delta) &= \begin{pmatrix} \cos \delta & 0 & \sin \delta \\ 0 & 1 & 0 \\ -\sin \delta & 0 & \cos \delta \end{pmatrix}
\end{align*}
$$

ここで

$$
\begin{align*}
 D_a &= (V_a & H_a & Z_a) \\
 D_b &= (V_b & H_b & Z_b)
\end{align*}
$$

式(9)の V_a, H_a, Z_a などはカッタ座標系の原点 O_a の、O-xyzにおけるx, y, z座標である。つまりに、X_a, X_b の単位法線を列ベクトルで与えられ、それぞれ N_a, N_b とすれば、曲面の内側 (軸側) から外側に向かう方向を正として、

$$
\begin{align*}
 N_a &= \frac{\partial X_a/\partial \phi_x \times \partial X_a/\partial \phi_y}{|\partial X_a/\partial \phi_x \times \partial X_a/\partial \phi_y|} \\
 N_b &= \frac{\partial X_b/\partial \phi_x \times \partial X_b/\partial \phi_y}{|\partial X_b/\partial \phi_x \times \partial X_b/\partial \phi_y|}
\end{align*}
$$

\[\text{(10)}\]
こう配備まれる骨格機械の歯切法に関する研究

設計基準点Pの位置を列ベクトルPであるわせ
\[
P = \begin{pmatrix}
0 \\
R_m
\end{pmatrix}
\] 　(11)

また、点Pにおける被削歯面の歯直角圧力角をα、ね
じれ角をβとすれば、被削歯面の歯面法線ベクトル
\[
N = \begin{pmatrix}
-\cos \alpha \cos \beta \\
\cos \alpha \sin \beta \\
\sin \alpha
\end{pmatrix}
\] 　(12)

さて、設計基準点Pにおいて、仮想冠歯曲面X₀
X₀の法線ベクトルN₀。N₀と被削歯歯曲面の法線ベ
クトルN(α, β) (設計値) とが正しく一致するように、
X₀とPをO-x₀y₀z₀に配置するものとすれば、その条件
は、ギヤに関しては次式で示される、
\[
N₀ = N \quad \text{X₀} = P
\] 　(13)

ビニオンに関しては
\[
N₀ = N \quad \text{X₀} = P
\] 　(14)

点Pにおける歯面X₀、X₀およびその法線N₀、N₀
の径数v₀, θ₀は式(6), (7)で定めることができる考えれ
ば、α, βを既知定数として、
\[
X₀ = X₀(\Delta₀, \varphi₀, V₀, H₀, Z₀)
\] 　(15)

N₀, N₀, N は単位ベクトルであるから、式(13)と式
(14)からは、形式的には、それぞれ3個の未知数を含
む3本のスカラ式を得る。よってこれらの式を解くこ
とにより仮想冠歯曲面X₀、X₀の位置を決定するこ
とができる。X₀, X₀, θ₀, v₀, δ₀にあらかじめ与えた
X₀, θ₀とがそのまま対応する歯面歯面を絶対するときのカタセッテイング線となる。式(13)あるいは
(14)を解析的に解くことは困難であるが、数値解を求めることにすればそれは簡単である。式(13)あるいは
式(14)の第1式でθ₀を消去すれば、A のみを含む式
を得るから、それについて数値解を求めればよい。以下簡単にθ₀, V₀, H₀, Z₀が計算できる。

4・2 ギヤ凸歯面とビニオン凸歯面の歯切用仮想冠歯
歯ギヤ凸歯面は、ギヤ凸歯面を歯切したとき
のカタ位置をそのままにしておき、歯の幅を広
げたときに得る歯面がそれぞれである。したがって、X₀
の配置がX₀→Z₀とθ₀ができると、内側切刃の形成する
歯面X₀もX₀→Z₀、θ₀できまり、それをX₀であらわせば、
\[
X₀(\phi₀, \theta₀) = B(\Delta₀)A(\delta₀)X₀(\phi₀, \theta₀)
+ D₀(V₀, H₀, Z₀)
\] 　(16)

X₀が点Pを通るから、このままの状態ではX₀は
点Pを通ることができない。よって前節と同様、点P
で議論するためにX₀が点Pを通るようにする。それ
にはX₀をx軸まわりに角度φ回転しなければなら
ない（図6）。X₀の成分をx', y', z' とすれば、角度φ
は次のように求めることができる。
\[
\begin{align*}
x'(\phi₀, \theta₀) &= x₀(\phi₀, \theta₀) + y'(\phi₀, \theta₀) \\
y'(\phi₀, \theta₀) &= 0
\end{align*}
\] 　(17)

式(17)を満たすφ₀, θ₀から
\[
\phi = \tan^{-1}(x'/y')
\] 　(18)

点Pを通るようにしたX₀をX₀であらわせば、C
を座標変換行列として、
\[
X₀(\phi₀, \theta₀) = C(\psi)X₀(\phi₀, \theta₀)
\]

C =
\[
\begin{pmatrix}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{pmatrix}
\] 　(19)

点Pにおけるφ₀, θ₀はX₀＝Pから求めることができる。
また、その点におけるX₀の単位法線ベクトル
N₀も計算できる。歯切されるギヤ凸歯面の設計基
準点Pにおける歯直角圧力角α' およびねじれ角β' は次式
から求められる。使用するカタグとその配置から必然的
に決まってしまう。よって、それらは設計値とわずか
に異なった値にならざるを得ない。
\[
\begin{align*}
-\cos \alpha' \cos \beta' \\
\cos \alpha' \sin \beta'
\end{align*}
\] 　(20)

ビニオン歯面歯切用仮想冠歯曲面X₀の配置は
次式を解くことによって、定まる。
\[
\begin{align*}
N₀(\delta₀, \phi₀, V₀, H₀, Z₀) &= N₀ \\
X₀(\delta₀, \phi₀, V₀, H₀, Z₀) &= P
\end{align*}
\] 　(21)

5. 仮想冠歫歯曲面間の接触形態

前節では仮想冠歫歯曲面X₀とX₀、X₀とX₀の配
置法についてのべたが、それらの配置条件は設計基準
点 P で法線を一致させただけである。したがって、2 書のものがべたように、\(X' \) と \(X_0 \) あるいは \(X_0' \) と \(X_0' \) の接触状態は図 2 に示した形のいずれかになっている。本章ではこれを調べるために、横田が定義した相対全曲率を用いることにする。

5.1 横田による相対全曲率（） いま、二つの曲面 \(X_0 \) と \(X_0' \) が一点 P で接しおり、曲面 \(X_0' \) のその点における主方向ベクトルおよび主曲率をそれぞれ、\(e_{10} \), \(e_{20} \) および \(1/R_{10}, \, 1/R_{20} \) とする。曲面 \(X_0' \) に関しては、\(e_{10} \), \(e_{20} \) および \(1/R_{10}, \, 1/R_{20} \) とする。主方向ベクトルと曲面の単位法線ベクトル \(N \) との間には、次の関係を満たすようにその方向が定められているとする。

\[
N = e_{10} \times e_{20} = e_{10} \times e_{20}
\]
もまた、\(e_{10} \) と \(e_{10} \) のなす角を \(\sigma \) とすれば、
\[
e_{10} \times e_{10} = \sin \sigma \, N
\]
これから、相対主曲率 \(K_1, \, K_2 \), 相対全曲率 \(K \) は
\[
K_1 = H \pm MT \sin 2\sigma
\]
\[
K = K_1 + K_2
\]
ここに、
\[
2H = (1/R_{10} + 1/R_{20}) - (1/R_{10}' + 1/R_{20}')
\]
\[
M = \sqrt{T_1^2 + T_2^2 - 2T_1T_2 \cos 2\sigma} / (T_1 \sin 2\sigma)
\]
\[
2T_1 = 1/R_{10} - 1/R_{20}
\]
\[
2T_2 = 1/R_{10}' - 1/R_{20}'
\]
曲面（表面） \(X_0 \) と \(X_0' \) が図 2（a）の接触状態にあるときは、相対全曲率 \(K \) は負であり、図 2（b）、（c）の場合には、\(K \) はそれぞれゼロ。正である。\(K \) が負の場合は、内側円弧切れ刃の曲率半径を小さくすることによって、これを正にすることはできる。

以上の議論から相対全曲率 \(K \) を計算するためには、曲面 \(X_0 \) と \(X_0' \) の主方向および主曲率を知らなければならず、\(X_0 \), \(X_0' \) についても同様である。以下にそれらを求めること。

5.2 曲面の主曲率と主方向 曲面 \(X_0 \) の任意の点における局所的性質は、その点における曲面の単位法線ベクトル \(N_{v_0}, \, e_{v_0} \) の変化から知ることがができる。そこで、\(N_0 \) の空間的変化を意味するアフィノール \(\nabla N_0 \) を導入すれば、点 \(P \) における曲面 \(X_0 \) の主曲率 \(1/R_{10}, \, 1/R_{20} \) は、\(N_0 \) の向きに注意して、
\[
1/R_{10} = -e_{10} \cdot \nabla N_0 \cdot e_{10}
\]
\[
1/R_{20} = -e_{20} \cdot \nabla N_0 \cdot e_{20}
\]
曲面 \(X_0 \) は回転面であるから、主方向ベクトルは
\[
e_{10} = (\partial X_0/\partial \phi_0) / |\partial X_0/\partial \phi_0|
\]
\[
e_{20} = N_0 \times e_{10}
\]
これより
\[
e_{20} = N_0 \times e_{10}
\]
曲面 \(X_0 \) についても同様に、

\[
e_{10} = (\partial X_0/\partial \phi_0) / |\partial X_0/\partial \phi_0|
\]
\[
e_{20} = N_0 \times e_{10}
\]
\[
1/R_{10} = -e_{10} \cdot \nabla N_0 \cdot e_{10}
\]
\[
1/R_{20} = -e_{20} \cdot \nabla N_0 \cdot e_{20}
\]
曲面 \(X_0 \) についても同様に、

\[
\nabla N_0 = \nabla X_0 / \partial \phi_0 \times N_0 \quad \partial N_0
\]
\[
\nabla N_0 = \nabla X_0 / \partial \phi_0 \times N_0 \quad \partial N_0
\]
\[
\nabla N_0 = \nabla X_0 / \partial \phi_0 \times N_0 \quad \partial N_0
\]

図 7 仮想冠歯車とギヤの速度・角速度
向と主曲率の求め方についてのべる。各 \(X_g, X_s, X_p \) についても同様にして求めることができる。

\(X_g \) と \(G \) は線接点である。また、点 \(P \) における \(X_g \) と \(G \) の相対角速度 \(\omega \) は零であるから、接触点の面法線 \(N_g \) と直交する単位ベクトル \(t \) は、食違い軸歯車理論で歯先が速いた式より

\[
t = \omega \times N_g \cdot \omega \times N_g \quad \text{(32)}
\]

ここに \(\omega \) は相対角速度であり、仮想歯車の角速度を \(\omega_1, \gamma_1 \) や \(\omega_2, \gamma_2 \) とすれば (図 7)

\[
\omega = \omega_1 - \omega_2 \quad \text{(33)}
\]

\(t \) 方向の \(X_g \) と \(G \) の相対曲率 \(k \) は、歯先の式より

\[
k = -\frac{(\omega \times N_g) \cdot \omega \times N_g}{N_g \cdot q} \quad \text{(34)}
\]

\[
q = \omega \times \omega
\]

ここに \(q \) は点 \(P \) における仮想歯車の速度である。

一方、\(X_s \) の \(t \) 方向の法曲率を \(k_{1s} \) とすれば

\[
k_{1s} = -\frac{1}{t \cdot \nabla X_s} \quad \text{(35)}
\]

したがって、\(t \) 方向の \(G \) の法曲率 \(k_{1s} \) は、\(k = k_{1s} - k_{10} \) より

\[
k_{10} = k + k_{10} \quad \text{(36)}
\]

\(G \) の接線方向の法曲率 \(k_{10} \) と測地的曲率率 \(1/\tau_1 \) は、\(X_g \) のそれらを等しいから

\[
k_{10} = -\frac{(N_g \times t) \cdot \nabla N_g (N_g \times t)}{t \cdot \nabla N_g} \quad \text{(37)}
\]

\[
1/\tau_1 = -\frac{(N_g \times t) \cdot \nabla N_g \cdot t}{t \cdot \nabla N_g}
\]

ギヤ凹面 \(G \) の主曲率と主方向を、5 場と同じ記号を用いることが、それぞれ \(1/R_1, 1/R_2, e_{10}, e_{12} \) とすれば、それらは次式で求められる。

\[
k_{10} = \cos^2 \phi \frac{R_1}{R_2} + \sin^2 \phi \frac{R_2}{R_1}
\]

\[
k_{12} = \frac{1}{R_2} + \frac{1}{R_1}
\]

\[
1/\tau_1 = (1/R_1 - 1/R_2) \sin \phi \cos \phi \quad \text{(38)}
\]

\[
e_{10} = \cos \phi \frac{t}{- \sin \phi N_g \times t}
\]

\[
e_{12} = N_g \times e_{12}
\]

式中の \(\phi \) は主方向 \(e_{12} \) と \(t \) のなす角で、その正方向は \(e_{10} \) から \(e_{12} \) へ向く方向である。

仮想歯車歯面 \(X_s \) によって成されるビニオン凸歯面についても同様に求められ、5 場の記号をそのまま用い、\(1/R_1, 1/R_2, e_{10}, e_{12} \) とし、これらと式 \(22 \sim 25 \) からギヤ凹面とビニオン凸面の点 \(P \) における相対主曲率を知ることができる。反対側歯面についても同様である。

7. 設計例と歯切実験

6 場までの結果は、2 場でのべた基本的考え方になかった幾何学的立場からの議論であるが、これが実用的歯切法であるかどうかを歯切実験によって確かめる必要がある。歯切りする仮想歯車の諸元を表 1 に示す。この諸元を選びた特別の理由はない。使用したカット諸元を表 2 に示す。歯切盤は Gleason No.116 Hypoid Generator を用いた。

表 3 に、カッタ内側切れ刃の円弧の曲率半径 \(r \) mm とハイパボロイド座標 \(\alpha = \alpha_1 = \alpha_2 \) つなに対する仮想歯車歯面 \(X_g \) と \(X_s \) の相対全曲率 \(K \) の計算結果を示す。他端の成長数は \(X_g \) と \(X_s \) の相対全曲率である。この計算においては、切れ刃の円弧は図 3 の点 \(A(R - W/2, 0) \) と点 \(B(R - W/2 - R \tan \gamma_s/8, -R/8) \) を通るものとしている。このとき円弧の曲率を中心に \(y_0, x_0 \) は、図 3 を参照して次式で計算される。

\[
\begin{align*}
y_0 &= R - W/2 - R \tan \gamma_s/16 \\
&= -\sqrt{r^2 \cos^2 \gamma_s - (R/16)^2} \\
x_0 &= \sqrt{r^2 \sin^2 \gamma_s - (R \tan \gamma_s/16)^2 - R/16}
\end{align*}
\]

(39)

表 1 仮想歯車諸元

<table>
<thead>
<tr>
<th>Shafts angle 90° , Module 6, Pressure angle 16°</th>
<th>Gear</th>
<th>Pinion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction of spiral (L)</td>
<td>(R)</td>
<td></td>
</tr>
<tr>
<td>Number of teeth (41)</td>
<td>(12)</td>
<td></td>
</tr>
<tr>
<td>Dia. of pitch circle (240 \text{mm})</td>
<td>(72 \text{mm})</td>
<td></td>
</tr>
<tr>
<td>Pitch cone angle (73°41')</td>
<td>(16°19')</td>
<td></td>
</tr>
<tr>
<td>Cone distance (100.16 \text{mm})</td>
<td>(112.16 \text{mm})</td>
<td></td>
</tr>
<tr>
<td>Mean cone distance (128.16 \text{mm})</td>
<td>(185.80 \text{mm})</td>
<td></td>
</tr>
<tr>
<td>Circular pitch (80.50 \text{mm})</td>
<td>(18.85 \text{mm})</td>
<td></td>
</tr>
<tr>
<td>Addendum (2.60 \text{mm})</td>
<td>(7.20 \text{mm})</td>
<td></td>
</tr>
<tr>
<td>Dedendum (h_g, h_p) (8.33 \text{mm})</td>
<td>(3.75 \text{mm})</td>
<td></td>
</tr>
<tr>
<td>Dedendum angle (\delta_g, \delta_p) (3°43')</td>
<td>(1°40')</td>
<td></td>
</tr>
<tr>
<td>Face angle (74°51')</td>
<td>(19°51')</td>
<td></td>
</tr>
<tr>
<td>Dia. of crown circle (247.41 \text{mm})</td>
<td>(85.70 \text{mm})</td>
<td></td>
</tr>
<tr>
<td>Tooth thickness (7.03 \text{mm})</td>
<td>(11.81 \text{mm})</td>
<td></td>
</tr>
</tbody>
</table>

表 2 カッタ諸元

Cutter dia. \(Z \)	\(9° \) (228.6mm)
Cutter No. \(C \)	\(9 \)
Pressure angle \(\alpha \)	\(16° \)
Point width \(W \)	\(0.06" (1.524 \text{mm}) \)

表 3 \(X_g \) と \(X_s \) の相対全曲率 \(\times (10^{-4} \text{mm}) \)

<table>
<thead>
<tr>
<th>(r)</th>
<th>(0)</th>
<th>(5)</th>
<th>(10)</th>
<th>(15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>16(20)</td>
<td>16(11)</td>
<td>16(0.2)</td>
<td>15(-11)</td>
</tr>
<tr>
<td>800</td>
<td>-17(-14)</td>
<td>-17(-25)</td>
<td>-17(-38)</td>
<td>-18(-51)</td>
</tr>
</tbody>
</table>
表 4 仮想冠歯車歯面 X₁₅(X₁₅), X₂₆, X₃₆ の配置

<table>
<thead>
<tr>
<th>Gear</th>
<th>X₅₀</th>
<th>X₂₆</th>
<th>X₃₆</th>
<th>δ₅</th>
<th>δ₂₆</th>
<th>δ₃₆</th>
<th>γ₅₀</th>
<th>γ₂₆</th>
<th>γ₃₆</th>
<th>φ₁</th>
<th>φ₂</th>
<th>φ₃</th>
<th>φ₄</th>
<th>Pitch cone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinion-convex X₅₀</td>
<td>3°43'</td>
<td>0°48'</td>
<td>94.58</td>
<td>43.13</td>
<td>1.14</td>
<td>14°15'</td>
<td>91°47'</td>
<td>55°46'</td>
<td>127°36'</td>
<td>73°41'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinion-concave X₅₀</td>
<td>1°40'</td>
<td>0°33'</td>
<td>-92.67</td>
<td>48.20</td>
<td>1.47</td>
<td>6°27'</td>
<td>-149°58'</td>
<td>56°04'</td>
<td>-0°33'</td>
<td>16°19'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 8 かき歯車の歯当り

歯切実験には a₁ = a₂ = 0 mm, r = 400 mm の円弧切れ刃を用いることにし、市販のカッタプレードのうち、内側直線切れ刃を円弧に修整し、外側切れ刃はそのまま用いた。この場合の仮想冠歯車歯面 X₅₀, X₂₆, X₃₆ の配置をこれまでにしたべた方法で計算し、その結果を表 4 に示す。最初の 5 列までがそれである。φ₁, φ₂, φ₃, φ₄ それぞれを上記の歯切盤に設定するために必要なセッティング角であり、それぞれカッタ軸回転角、スイベル角、偏心角およびクレードル角といわれる角度である。φ₁～φ₄ の計算方法については省略する。

歯切実験結果を、歯当りの形で、スケッチとして図 8 に示す。これは極軸負荷運転後のビニオン歯面上のいわゆる黒当りであり、歯当り調整のための修正歯切りをしていない。歯当りは、バイアス当りとなっているが、これは内側カッタの円弧が理論どおりにできていないことがその原因であると考えている。被削歯車歯面の相対主曲率半径は、計算結果によれば、

1/K₅₀ = 11.3 mm（歯形方向）
1/K₃₀ = 2032 mm（歯すじ方向）

音源から 1 m の距離での騒音測定では 76 dB（ビニオン回転数 1000 rpm）であり、実用歯車としては満足できるものではないが、本実験の目的は十分に果立てている。

8. 結 論

よい歯当りをする歯車対を得ることが困難であるグリーンソフッコ配歯りかき歯車の歯切法の改善を目的とし、小さな相対全曲率で点接触するこう配歯りかき歯車の採用を提案し、それに必要な基礎理論についてのべた。そして最後に具体的な設計例を示し、それについて歯切実験を行い、騒音試験によってこの方法の有用性を確かめたことをしめした。

本報はグリーンソフッコ配歯りかき歯車の歯切法についてのべたが、等高歯の場合にも適用できる。さらに近年需要が増しているこれらの歯車の研削加工にも本報の点接触歯車の考え方が役立つものと考える。

おりに歯切実験を快く許諾くださった（株）長岡機械製作所 内山弘理社長、市野末明技師室長に感謝するとともに、実験に協力いただいた同社 山崎隆、中野貫一両氏にお礼申し上げる。

文 献

（1） 石川、機械要素 (2), (昭 50), 218, コロナ社。
（2） 歯車装備, (昭 37), 859, 日刊工業新聞社。
（3） 文献 (2) 的 759 ページ。
（4） 田村, 機論, 48-253, 昭 42, 1491。
（5） 田村・ほか 2 名, 機論, 46-402, 昭 55, 179。
（6） 研井, 機論, 21-102, 昭 30, 164。
（7） 田村・ほか 1 名, 機論, 49-439, 昭 58, 465。

討 論

（1） 論文の中で「歯をこう配歯にすると、良好な歯当りをする歯車対を得ることが、理論的にできない…」と断言しておられるが、これらはいかなる理論によって結論されるのか教えていただきたい。

（2） ご承知のごとく、本論文と同一目的にて、グリーンソフッコのニューパーパルシステムがある、これはこう配歯に基づいて生じる歯すじ方向のねじり力を、歯を含む歯車、歯切盤を利用して消滅させる方法である。このためバンジアス、プロファイルに関する誤証を不要とする立
派な方式と考えられるが、それほど普及していない。この
擬球面形形を代わりに擬球面を提案されている
が、理論上いかなる点が改良されるのかご説明願いたい。
（3）現在のまわりばさぎ歯車の歯切り上の問題点
は、プロファイアルを制御する現場技能（微小のオフセッ
トを与える方法）が不十分である。図3のスケッチは、両者とも上記の調整が不充分である
が、本論文によれば、上記の調査は不要になるはずと
思うがどうか。
（参考）（1）意図するところは2頁の前半に記した
たことである。すなわち仮想歯車歯面を円すい面に
限定して考えたとき、歯車を分けて仮想歯
車歯面で求め、その主軸の食違いにより
、干渉させざるを得ないということを表現したかった
のである。綾音における表現としては適切でなかった
と考える。
（2）ユニツルフ関注は石川氏への回答の
（2）をご参照願いたい。
擬回転曲面をとりあげたのは理論的有利さをねら
ったのではなく、切れ刃の形成する曲面に多様性を与
えたかったことと、曲面実験用カッタの製作の容易さ
とを考慮した結果である。すなわち市販のカッタプレ
ードをとり直すだけでよいからである。しかし図3か
らも明らかのように、擬円すい面と円すい面で十分で
あることが判明したのでは、擬回転曲面と回転曲面
を使用しなかった。
（3）図8は曲当調整をしない状態のスケッチで
ある。また本文では記されなかったが、図8の歯車では
1回の調整で簡単な所定の位置に曲当を移すことが
できた。これには、ご指摘のとおり、現場の経験が大
きく役立った。
なお、歯形修整量とクラウン量をはじめから大
きくしておけば曲当調整は不要になったかもしれない。
被削歯車曲面間の相対的な歯形修整量が約0.05
mm、クラウン量の曲率半径が2m程度である本報
の場合、それらがカッタの製作精度とカッタセッテ
ィング精度などの影響を回避するのに十分な値であった
かどうかについては今後検討しなければならないと考
えている。
（質問）石川昌一（（株）長谷川歯車）
こう配備まわりばさぎ歯車の曲面法に関する研究
（1）仮想歯車歯面として点接触する2曲面を使
い、その接触点として設計基準点（ピッチ点）を選び
、同点で歯面法線を一致させる方法を探っておられる
が、表1の諸元のような歯車では軸位のため設計基準
点は有効歯だけで27%：73%の割合に位置し、歯面
上で少し寄った点を選ぶことになると思う。条件を
緩めて歯たた上の方を選べるようにしたほうが
よいのではないか（たとえば図6のXaxについてい
えばもまわりにある角度回すということになる）。
（2）こう配備を簡単な理論的見通しのもとに曲切
りする方法の一にグリーンソースのユニツルフがあ
る（付1）。本報の方法の同調と比較した得失はどうであ
ろうか。
（回答）（1）本報では、簡単にするため、設計
基準点Pで歯面法線を一致させた。しかし実際の設計
では、ご指摘のように、設計基準点とは別の点P'を
定め、その点で歯面法線を一致させることになるよ
う、このとき、本文の式（7），（11），（12）および（17）の右
辺の値が変わる。また式（32），（34）を次式i
に変更する

\begin{align}
t &= (\omega \times N_{o} - \nabla N_{o} \cdot \omega) / |\omega \times N_{o} - \nabla N_{o} \cdot \omega| \\
k &= \frac{- (\omega \times N_{o} - \nabla N_{o} \cdot \omega)^{2}}{w \cdot (\omega \times N_{o} - \nabla N_{o} \cdot \omega) + N_{o} \cdot q} \quad (i)
\end{align}

ここでv1, v2はそれぞれ点P'における仮想歯車
ギヤの速度ベクトルである。
（2）ユニツルフ関注では、カッタの内刃と外刃の形
成する曲面はともに面に近い円弧面（擬球曲面）であ
るが、これらを面とみなすことによって理論的見通
しをよくしているように見える。しかし実際
に円弧面として取扱うならば、本報と同じ考え方でカッ
タ刃形とカッタ配置をきめなければならないはずであ
る。これを念れば面とみなしたことによる影響があ
らわれ、図2（a）に示したような結果になる可能性も
十分に考えられる。
本報によればテクスルフ法の妥当性を確かめること
ができる。