フロンタル伝達マトリックス法*
（伝達マトリックスの効率的な解法とリアナリシス）

岡田兼二**, Walter D. PILKEY***, 王 波 平****
Yoji OKADA, Walter D. PILKEY, Bo Ping WANG

Key Words: Structural Analysis, Vibration, Transfer Matrix Reanalysis, Frontal Solution, System Design

1. はじめに

伝達マトリックス法は、直線構成の軸系やパイプ系、あるいは大形構造物の近似解析などに有効に使われている[1][2]。しかし解析には指数関数項が含まれるため、長大構造物の高周波での計算が不安定になったり、まるで誤差が増加してしまう欠点が指摘されてきた。

これらの欠点を改善するため、Riccati 法[3][4], 変位法[5], 力法あるいは逐次リダクション法などが考えられてきた。一方有限要素法などのマトリックス解法に、フロンタル法[6]が提案され広く使われるようになってきた。本法は伝達マトリックスの計算にこのフロンタル法と相営な考え方で、部分マトリックスの逐次リダクションによって計算の安定性と効率化をはかるとする手法である。手順は少し煩雑ではあるが、計算の精度と効率は良好なものであると考えられる。しかも構造物のブロック化や[8], 一部構造のパラメータ変化を効率よく評価するリアナリシス[9]へ簡単に応用できる。

リアナリシスとは、構造物の必要な特性計算をメモリに収容しておき、一部の特性が変化したとき構造全体を解析しなおすことなく、効率よく特性変化を評価しようとする方法である。ここで示す方法は、構造物をブロック化だけで特別なリアナリシス方程式をたてることなく、メモリ効率よく特性変化を評価できる。

2. フロンタル変換

図1のような直線状の構造物を考える。任意の点jとj+1での状態変数は、表1の記号を使って次のように関係づけられる[1][2]。

\[\{s^{j+1}\} = [U'] \{s^j\} + [F'] \]

ここで [] はベクトルを、[] はマトリックスを表す。上添字はポイント(またはフィールド)の番号を、下添字はマトリックスの要素(または部分マトリックス)

図 1 直線構成の構造物系

* 昭和58年9月30日 日立製作所講演会において講演、原稿受付 昭和59年3月1日。
** 正員、茨城大学工学部 (〒316 日立市中波沢町4-12-1)。
*** バージニア大学 (Dep. of Mechanical and Aerospace Eng., Univ. of Virginia, Charlottesville, VA 22901, U.S.A.)。
**** テキサス大学アーリントン校 (Dep. of Mechanical Eng., Univ. of Texas at Arlington, Arlington, Texas 76019, U.S.A.)。

NII-Electronic Library Service
フロンタル伝達マトリックス法

境界条件では状態変数の半分は既知であり、通常は零である。したがって境界点を含め、すべての状態変数（\(s^j\)）の半分（\(s^k\)）を既知、残り半分（\(s^l\)）を未知とし、それらをフロンタル消去法を用い、（\(s^k\））を逐次消去する。ただし構造物の間に剛支持や、曲げ（せん断）リレースなどが存在した場合は、不連続変数が（\(s^k\））内に入り、かつ零となる変数が（\(s^l\））内に入るように分類し直さなければならない。

左端の境界条件、点0においては、

\[
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix} =
\begin{bmatrix}
I & 0 \\
0 & I
\end{bmatrix}
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix}
\]

となる。ここで \(I\) は単位マトリックス、\(0\) は零マトリックスを表す。要素0での伝達マトリックスは、次のように変形される。

\[
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix} =
\begin{bmatrix}
(U_{kk} & U_{kl} \\
U_{lk} & U_{ll}
\end{bmatrix}
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix}
+
\begin{bmatrix}
F_k \\
F_l
\end{bmatrix}
\]

\[
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix} =
\begin{bmatrix}
U_{kk} & U_{kl} \\
U_{lk} & U_{ll}
\end{bmatrix}
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix}
-
\begin{bmatrix}
(F_k) \\
(F_l)
\end{bmatrix}
\]

ここで、\([P_k] = [U_{kk}]\)、\([P_l] = [U_{ll}]\) はフロンタル伝達マトリックスであり、\((Q_k) = [F_k]\)、\((Q_l) = [F_l]\) はその外力項である。これらの一様は後に説明する。

式（3）の上側を（\(s^k\））について解き、これを下側に代入する。

\[
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix} = [P_k^{-1}](s^k) - [P_l^{-1}](Q_l)
\]

\[
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix} = [P_k]^{-1}(s^k) + \{(Q_k) - [P_k][P_l]^{-1}(Q_l)\}
\]

式（5）より次の関係を得る。

\[
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix} =
\begin{bmatrix}
I & 0 \\
0 & I
\end{bmatrix}
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix}
+
\begin{bmatrix}
0 \\
(Q_l) - [P_k][P_l]^{-1}(Q_l)
\end{bmatrix}
\]

式（6）を要素2の伝達関係に代入すると、次のように変形できる。

\[
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix} =
\begin{bmatrix}
U_{kk} & U_{kl} \\
U_{lk} & U_{ll}
\end{bmatrix}
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix}
+
\begin{bmatrix}
F_k \\
F_l
\end{bmatrix}
\]

\[
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix} =
\begin{bmatrix}
U_{kk} & U_{kl} \\
U_{lk} & U_{ll}
\end{bmatrix}
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix}
-
\begin{bmatrix}
(F_k) \\
(F_l)
\end{bmatrix}
\]

\[
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix} =
\begin{bmatrix}
(F_k) \\
(F_l)
\end{bmatrix}
+
\begin{bmatrix}
Q_k \\
Q_l
\end{bmatrix}
\]

この式（6）により次の関係を導くこととする。

\[
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix} =
\begin{bmatrix}
P_k^{-1} & 0 \\
0 & P_l^{-1}
\end{bmatrix}
\begin{bmatrix}
(Q_k) \\
(Q_l)
\end{bmatrix}
\]

\[
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix} =
\begin{bmatrix}
P_k^{-1} & 0 \\
0 & P_l^{-1}
\end{bmatrix}
\begin{bmatrix}
(Q_k) \\
(Q_l)
\end{bmatrix}
\]

以上のフロンタル変換を、左端の境界条件により順次フロンタル形式に直すことは、フロンタル波前面まで特性を集約する性質がある。右端の境界変化とすると次のフロンタル伝達関数を得る。

\[
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix} =
\begin{bmatrix}
P_k^{-1} & 0 \\
0 & P_l^{-1}
\end{bmatrix}
\begin{bmatrix}
(Q_k) \\
(Q_l)
\end{bmatrix}
\]

右端での境界条件は、左端や中間支持とは一様に異なるが、変数の半分は既知であり通常は零である。既知変数を（\(s^k\））に含まれることを行い、次に反対に変数の反対数を用いることを方法（13）を使うことに、次のように変形できる。

\[
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix} =
\begin{bmatrix}
P_k^{-1} & 0 \\
0 & P_l^{-1}
\end{bmatrix}
\begin{bmatrix}
(Q_k) \\
(Q_l)
\end{bmatrix}
\]

\[
\begin{bmatrix}
(s^k) \\
(s^l)
\end{bmatrix} =
\begin{bmatrix}
P_k^{-1} & 0 \\
0 & P_l^{-1}
\end{bmatrix}
\begin{bmatrix}
(Q_k) \\
(Q_l)
\end{bmatrix}
\]

これを次々と逆に代入してゆくと、すべての変数を求めることが可能である。

式（9）、（10）のフロンタル変換は、次のようなマトリックス変換で、計算の安定性がよく行われる。またPマトリックスはUマトリックスの半分で、記憶容量を節約できる。欠点は相関係数を変数に選ぶことにより、変数の反対数を数値に近い値を求めることが可能である。

2.1 静荷重に対する解法例
フロンタル伝達解法の簡単な応用例として、図2に示す静荷重fに対する応答を求める。左端で変位wとθが零である。したがって点0 - 1間では次の関係式が成立する。

<table>
<thead>
<tr>
<th>符号</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Young's modulus [Pa]</td>
</tr>
<tr>
<td>E</td>
<td>Force [N]</td>
</tr>
<tr>
<td>P</td>
<td>Forcing term</td>
</tr>
<tr>
<td>G</td>
<td>Torsional spring constant [Nm]</td>
</tr>
<tr>
<td>I</td>
<td>Moment of inertia of the cross section of beam [m^4]</td>
</tr>
<tr>
<td>K</td>
<td>Linear spring constant [N/m]</td>
</tr>
<tr>
<td>L</td>
<td>Length of beam [m]</td>
</tr>
<tr>
<td>M</td>
<td>Moment [Nm]</td>
</tr>
<tr>
<td>P</td>
<td>Frontal transfer matrix</td>
</tr>
<tr>
<td>Q</td>
<td>Frontal forcing term</td>
</tr>
<tr>
<td>S</td>
<td>State vector</td>
</tr>
<tr>
<td>U</td>
<td>Transfer matrix</td>
</tr>
<tr>
<td>V</td>
<td>Shear force [N]</td>
</tr>
<tr>
<td>W</td>
<td>Displacement [m]</td>
</tr>
<tr>
<td>θ</td>
<td>Rotation</td>
</tr>
<tr>
<td>ρ</td>
<td>the specific density per unit length [kg/m]</td>
</tr>
</tbody>
</table>
フロンタル伝達マトリックス法

\[
\begin{bmatrix}
V^- \\
M^- \\
w^- \\
\theta^-
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 0 \\
\frac{1}{l} & 1 & 0 & 0 \\
-\frac{l^3}{6EI} & -\frac{l^2}{2EI} & 1 & -l \\
\frac{l^2}{6EI} & \frac{1}{2EI} & \frac{l^2}{2EI} & 0 & 1
\end{bmatrix}
\begin{bmatrix}
V^+ \\
M^+ \\
w^+ \\
\theta^+
\end{bmatrix}
\tag{15}
\]

点1には曲げレリースがあり、その前後で傾きは不連続（\(\theta^-=\theta^-\)）であり、モーメントは零（\(M^-=M^+=0\)）となる。したがって \([s]=\{\theta \cdot V \cdot M\}^T\) のように入れ替えなければならない。式(15)より

\[
\{s^+_n\} = \begin{bmatrix}
w^+ \\
\theta^+
\end{bmatrix}
= \begin{bmatrix}
\frac{l^3}{6EI} & \frac{l^2}{2EI} \\
\frac{l^2}{6EI} & \frac{l}{EI}
\end{bmatrix}
\begin{bmatrix}
V^+ \\
M^+
\end{bmatrix}
\tag{16}
\]

となり、式(16)より \([V^+, M^+]\) を解き、式(15)に代入すると次式を得る。

\[
\begin{bmatrix}
w^- \\
\theta^- \\
w^+ \\
\theta^+
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
\frac{12EI}{l^2} & \frac{6EI}{l^2} & \frac{6EI}{4EI} & \frac{l}{l} \\
\frac{6EI}{4EI} & \frac{l}{l} & \frac{6EI}{l} & \frac{l}{l}
\end{bmatrix}
\begin{bmatrix}
w^- \\
\theta^- \\
w^+ \\
\theta^+
\end{bmatrix}
\tag{17}
\]

点1の前後ではモーメントは零である。\(M^-=0\)を式(17)に代入すると、\(\theta^- = (3/2l)w^-\)を得る。また不連続角を \(\theta^+\) として、\(\theta^+ = (3/2l)w^+\) と \(\theta^+ = \theta^- + \theta^+\) を式(17)に代入すると、次式となる。

\[
\begin{bmatrix}
w^+ \\
\theta^+ \\
w^+ \\
\theta^+
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
\frac{1}{3} & \frac{1}{2l} & 1 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
w^- \\
\theta^- \\
\theta^+ \\
\theta^+
\end{bmatrix}
\tag{18}
\]

これを一つのフロンタル伝達マトリックスと考え、式(4)と(6)に代入すると次式を得る。

\[
\begin{bmatrix}
w^+ \\
\theta^+ \\
w^+ \\
\theta^+
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 1 \\
\frac{3}{2l} & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\tag{19}
\]

点1-3間では外力項が存在し、次の関係が成立する。

\[
\begin{bmatrix}
w^+ \\
\theta^+ \\
w^+ \\
\theta^+
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
\frac{3EI}{l^2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\tag{20}
\]

右端での境界条件は単純支持であり、式(14)に対応する解は \(w^-=M^+=0\) より求まる。

\[
\begin{bmatrix}
w^+ \\
\theta^+ \\
w^+ \\
\theta^+
\end{bmatrix}
= \begin{bmatrix}
-3 & -2l & 0 & 0 \\
6 & 1 & 0 & 0 \\
-3l^2 & 0 & 0 & 0 \\
-3l^2 & 0 & 0 & 0
\end{bmatrix}
\tag{21}
\]

この値を式(21)，(20)…と代入することにより、全状態変数を知ることができる。

2.2 数値計算精度の検討　理論解の求まる単純支持ばかりの固有振動数を計算することにより、計算精度の検討をおこなう。長さ 1 m、線密度 0.1 kg/m、曲げ剛性 \(EI=10 N\cdot m^2\) の単純支持ばかりを、20 等分してオイラ・ペルヌーイの連続質量とリモデルの伝達マトリックスを求め、固有振動数を計算する。表2に理論、
フロンタル伝達マトリックス法

伝達マトリックス法, フロンタル法で求まった共振振動数 [Hz] を示す。

伝達マトリックス法では, 左端の境界条件より要素マトリックスを合わせ, 右端の境界条件での行列式が零となる周波数を, HP 9816 S 上で求めたものである。周波数の増加とともにマトリックス要素値の大きくなり, 10 次以上で急激に誤差が増加する。このため, 分割数を 50 に増やしても, ほとんど改良されない。

一方フロンタル法は, 10 次と 30 次の () 付した周波数以外, 全く問題なく固有値が求まる。10 次, 30 次などの, 要素の長さがどう固有振動の 1/4 波長の整数倍となり, 部分マトリックス [P] が特異となるためである。分割数を増やすと () 内の値のようになる。行列式の値も, フロンタル変換が部分マトリックスの算出の次元であるため, 周波数とともに大幅に増加することはない。表 2 はフロンタル法がきわめて計算安定性の良いことを見出している。

3. リ ア ナ リ シ ス

リアナリシスとは複数基構造物の一部の特性パラメータを変えたり, 弾性支持を追加した場合, 基準物特性をすべて解析しなすことなしに, 効率良く特性変化を評価する解析能力である。ここで変換領域を [U] とする, 間隔の伝達マトリックスを境界条件より出発し, 図 1 の i 点までフロンタル法に変換することは、ここまでの動特性を一つのフロンタル関係式

\[\begin{bmatrix} s_i \\ \dot{s}_i \end{bmatrix} = \begin{bmatrix} P_{ii}^{-1} & Q_{ii}^{-1} \end{bmatrix} \begin{bmatrix} s_i^- \\ \dot{s}_i^- \end{bmatrix} \] (23)

に集約することに相当する。したがって図 1 の領域 B だけがパラメータ変化し, 領域 A と C が不変である場合, 式 (23) によって領域 C の特性は i 点に集約されることになる。図 1 の a については右端の境界条件より出発し, i+1 点までの逆向きのフロンタル伝達マトリックスを計算すれば, 特性集約が可能である。

通常の左より右への伝達関係 \[s_i^{(ii)} = (U') s_i \]
は右より左へ逆向きの伝達マトリックス [U] の導出に用いる。図 3 に従って座標が逆になるので, はりの場合次のように符号が変わる。

\[\begin{bmatrix} -\ddot{y}_i \\ \dot{y}_i \\ -\ddot{\theta}_i \end{bmatrix} = \begin{bmatrix} -\ddot{y}_{i+1} \\ \dot{y}_{i+1} \\ -\ddot{\theta}_{i+1} \end{bmatrix} + \begin{bmatrix} -F_{\delta i} \\ -F_{\theta i} \\ -F_{\gamma i} \end{bmatrix} \] (24)

この符号変化を逆向き伝達マトリックス \([U] \) および強制項 \([F] \) に入れ, 右端より左へのフロンタル伝達マトリックスを求めると, 式 (9) ～(12) と同様の式を得る。

\[[U'] = [U_{ii}] + [U_{ii'}][P_{ii'}^{-1}] [P_{ii'}^{-1}]^{-1} \] (25)

\[[U'] = [U_{ii}] + [U_{ii'}][P_{ii'}^{-1}] [P_{ii'}^{-1}]^{-1} \] (26)

\[[\dot{Q}] = [P_{ii}] ([\dot{Q}] [P_{ii'}]^{-1} [\dot{Q}] [P_{ii'}]^{-1}) \] (27)

\[\dot{Q} = [P_{ii}] ([\dot{Q}] [P_{ii'}]^{-1} [\dot{Q}] [P_{ii'}]^{-1}) \] (28)

この結果, 式 (23) より計算すると, 次式を得る。

\[\begin{bmatrix} s_i^{(ii)} \\ \dot{s}_i^{(ii)} \end{bmatrix} = \begin{bmatrix} P_{ii'}^{-1} & Q_{ii'}^{-1} \end{bmatrix} \begin{bmatrix} s_i^{(ii)-} \\ \dot{s}_i^{(ii)-} \end{bmatrix} \] (29)

式 (23) と式 (29) は, パラメータ変化領域の特性を, i 点と i+1 点に集約している。ただし \(s_{ii} \) と \(s_{ii'} \) の選択は, それぞれの境界条件もしくは中間サポートなどによって左右不統一である。これを通常の状態変数とならないようにマトリックスの行を入れ替え, 次式のように整理する。

\[\begin{bmatrix} s_i' \end{bmatrix} = [P] [s_i^{(iii)}] + [Q] \] (30)

\[\begin{bmatrix} s_i'' \end{bmatrix} = [P] [s_i^{(ii)}] + [Q] \] (31)

このことで \([P], [Q] \) は固定領域 C の特性を \(s_i' \) に集約したことを意味し, \([P], [Q] \) は固定領域 A の特性を逆向きに \(s_i'' \) に集約したことに相当する。パラメータ変化領域 B の伝達マトリックスに代入し, 未知変数 \(s_i' \) と \(s_i'' \) を消去すると, 次のリアナリシス

表 2 共振振動数の計算精度の比較

<table>
<thead>
<tr>
<th>NODE NUM.</th>
<th>THEORY</th>
<th>TRANSFER MATRIX</th>
<th>FRONTAL METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.71</td>
<td>62.83</td>
<td>15.71</td>
</tr>
<tr>
<td>2</td>
<td>15.71</td>
<td>62.83</td>
<td>15.71</td>
</tr>
<tr>
<td>9</td>
<td>1272.34</td>
<td>1272.34</td>
<td>1272.34</td>
</tr>
<tr>
<td>10</td>
<td>1570.80</td>
<td>1570.75</td>
<td>(1570.80)</td>
</tr>
<tr>
<td>11</td>
<td>1899.18</td>
<td>1899.18</td>
<td>1899.18</td>
</tr>
<tr>
<td>12</td>
<td>2261.92</td>
<td>2300.00</td>
<td>2261.92</td>
</tr>
<tr>
<td>13</td>
<td>2654.64</td>
<td>2323.22</td>
<td>2654.59</td>
</tr>
<tr>
<td>28</td>
<td>12315.00</td>
<td>-</td>
<td>12315.05</td>
</tr>
<tr>
<td>29</td>
<td>13210.40</td>
<td>-</td>
<td>13210.40</td>
</tr>
<tr>
<td>30</td>
<td>14137.20</td>
<td>-</td>
<td>(14137.20)</td>
</tr>
</tbody>
</table>

図 3 はりの座標変換

NII-Electronic Library Service
フロンタル伝達マトリックス法

解を得る。

\[
\begin{align*}
\begin{bmatrix}
\mathbf{S} & \mathbf{T}
\end{bmatrix} &= \left[\mathbf{P}' \mathbf{P} \right]^{-1} \left(\mathbf{F}' + \mathbf{U}' \right) \mathbf{Q}
\end{align*}
\]

領域 B の特性が変わるたびに \([\mathbf{U}']\) を求め、式(32)の解を求める。これをあらかじめメモリに収容しておいた固定領域のフロンタル関係式を逆に代入し、系の全応答を求めることができる。なおリアリティの性質上、固定領域 A, C の性質が複雑で、パラメータ変化が単純なほど効率は向上する。

3-1 リアリティ計算例 図4に示す簡単な架橋系の、中央部の分布質量が変化したときの周波数応答を計算する。領域 B のいかなるパラメータを変えて計算することも可能である。ここでは分布パラメータを扱えるため、単位長さ当たりの質量 \(\rho_2 \) を取込めた。

伝達マトリックスは、オイラ・ベルヌーイの基本質量モデルを用いている。

図5に \(\rho_2 \) を変えたときの周波数応答 \(\omega^2 / f \) を示す。計算はパーキニア大学 CDC コンピュータ上で行った。各周波数に対して、固定領域のフロンタル伝達マトリックスを求め、それをメモリに収容する。領域 2 については、分布質量を変えるごとに伝達マトリックスを求め、式(32)によって \(\{s^2 \}^{-1} \) と \(\{s^2 \}^2 \) を計算する。これとメモリ内のマトリックスによって、構全体の応答を計算する。図5には、\(\omega^2 \) のみの変位応答を例示している。当然のことながら、\(\rho_2 \) の増加によって共振振動数は低下する。

この簡単な例題でも、フロンタル法を使ったリアリティの計算効率（計算時間）は、通常の伝達マトリックス計算をやりなおすより数倍優れている。パラメータ不変領域の特徴がさらに複雑であれば、計算効率は飛躍的に向上する。

4. 結 論

フロンタル伝達マトリックス法は、有限要素法など、構造解析プログラムで使われるフロンタル解法と似た手法で、伝達マトリックスを順次リダクションして得る解法である。これの方法を用いるとき、通常の伝達マトリックスの半分のマトリックスとなるため、必要メモリや計算回数を節約できる。フロンタル変換が部分マトリックスの和の次元をもち、サポートなどで既知（通常は零）となる変数を消去してゆくため、計算の安定性が良いといった長所をもっている。しかもフロンタル波前面まで特性を積算するという性質によって、一部のパラメータ変化を効率よく評価するリアリティにそのまま応用できる。

本論文のリアリティはサポートのう入力やダンパの係数変化といった不連続パラメータのみならず、軸径や分布質量といった連続パラメータも評価し得る。したがって複雑な系の軸受特性の評価や、配管系の軸径直徑による動特性評価、あるいは最適設計などに有効に利用できる。

フロンタル伝達マトリックス法の最大の欠点は、状態変数を既知、未知に分けるためマトリックスの入れ替えが必要で、取扱いが複雑になることである。

なお、本研究の筆者たちは、昭和57年度文部省在外研究員として、パーキニア大学滞在中の研究の一部を、帰国後発展させたものである。関係各位に深く感謝申し上げます。

文 献

(3) Horner, G. C. and Pilkey, W. D., The Riccati Transfer
フロンタル伝達マトリックス法

論

（質問）山川宏（早稲田大学理工学部）
伝達マトリックス法の効率的な解法としてのフロンタル伝達マトリックス法に関するご研究を大変興味深く拝見致した。
（1）提示されたフロンタル伝達マトリックス法の短所として著者は状態変数を未知と既知に分け、対応するマトリックスを入力変数を束ねると考え、例えば左上部分マトリックスに在庫の関連を集めるというような方法を採れば、この点は改善されるかと思うが、いかがか。
（2）提示されたフロンタル伝達マトリックス法的な考え方を発展させ、感度解析や最適設計などで用いられる感度や傾斜の計算が可能と考えられかかるかが。
（3）伝達マトリックス法で用いられる逐次リダクション法、例えば文献（付1）のこわさマトリックスの漸化式を用いる方法と提示された方法は概念的には似ていると思われるいかがか。
また通常の伝達マトリックス法でも計算の精度を向上する目的で直列の連続系の一部を主接続とし、他の部分をいくつかの分岐接続として取扱う方法（付2）が考えられているが、この方法であると著者論文のリアリシスの項の考え方が適用できそうであるが、いかがか。
（回答）（1）たしかにマトリックスの入力を束ねるの提案を行った方法は考えられる。ただここで提示した方法は、従来の伝達マトリックス法では問題をおこしやすい。主接続に分岐を生じる場合に、未知の変数を束ねている2-1節の例題の式（17）, したがって境界条件だけではなく、中間支点に対する変数入力を束ねる場合も用意しなければならない。プログラム作業者が注意してこの入力を束ねる場合におい、利用者がこれを変形して応用したい時など、取扱いには充分注意しなければならないと思う。
（2）そのとおりであると思う。感度や傾斜の計算を行うためには、構造物の一部の特性が系全体に与える影響を効率よく評価する必要がある。そのためにリアリシスを行っている。リアリシスを拡張して構造物の部分パラメータの評価や最適設計、あるいは実験データによるパラメータ同定へと応用したいと考える。
（3）文献（付1）のこわさマトリックスの漸化式を用いる方法と、本論文の手法はどちらも部分マトリックスの逐次リダクションを用いる点で、同一の手法と思う。最大の相違点は、文献（付1）が取扱いの自由度を増やすように逐次リダクションを用いているのに対し、本論文の手法は計算効率を上げるように用いている点だと思う。
文献（付2）に関する接続系の扱いであるが、接続系や部分構造パラメータの扱い方については多くの手法が提案され、研究されていると思う。本論文では伝達マトリックスの計算効率を上げるフロンタル法が、そのようなパラメータ評価に使用するわけではないのであるという提案である。ご指摘のとおり、主接続系を分岐接続系という扱いを、部分構造パラメータの評価を扱うことは充分可能と考えられる。
（質問）菊池勝昭（株）日立製作所）
伝達マトリックス法の解法を解決する興味深い方法と思う。
（回答）（1）式の計算は、変数の有効数をいくつで行ったものか、また単精度がくのけた数でも良い方法では十分な精度が得られるか。
（2）はりの振動解析の場合、中間接続点で数はやや多く、非常に剛性の高いばねが存在するとき、伝達マトリックス法では固有振動数のみを振動モード

（付2）奥村ほか2名、原子炉制御系の設計方法に関する研究論文報告書、昭42, 19, 日本核学会。
ードも精度が悪くなる。このような条件で、フロンタル法はどのようになるか。
（3）従来、パーソナルコンピュータクラスの小形計算機での変動解析には計算精度および計算時間の点で良いな例があるようであるが、本フロンタル法をこの方面での強力な道具とすることができるよう思う。いかが考えか。
【回答】（1）表2の計算はHP 9816Sを使用したので、有効桁数は15桁で計算している。同じ計算を単精度くらいの桁数で試みてはいないが、図4の計算ほぼは単精度で全く問題が出ていない。計算途中のマトリックス値を書き出せとも、それほど該当の数を必要としている値ではないので、単精度でもそれほど問題はないと考える。
（2）中間に極度に柔らかいはりの振動は、通常のはりの周波応答を解くことと等価であり、フロンタル法では誤差が少なくなる。通常の伝達マトリックス法よりはるかに有利であるが、柔らかいはりの部分では要素分割を細かくする必要がある。したがって通常の方法より有利といっても、誤差が入る可能性は分割数を増すだけ増大する。
非常に剛性の高いばね支持という場合、中間剛支持として扱えるのであれば、状態ベクトル内の入れ替えによって、この点の変位を既知（この場合零）として、問題なく解くことができる。しかしこの方法を実用可能な場合では、計算誤差の増加は避けられないのではないかと考える。
（3）ご指摘のとおりパーソナルコンピュータクラスの振動解析手法として、計算時間および計算精度上最も有利なアルゴリズムを研究し、フロンタル伝達マトリックス法の研究をおこなったわけである。大形計算機でも計算精度が良いことは有利であろうが、小形計算機を考えた場合には本手法は相当に有利なものと考える。