Instability of Rotating System Coupled by Constant Velocity Joints
(2nd Report)

by Muneharu SAIGO and Takuzo IWATSUBO

Torque-induced lateral instability of rotor systems coupled by Constant-Velocity joints is theoretically investigated for different four types of model; flexibly-supported rigid rotor models of working machines, such as compressor or turbine, and those of transmission shafts for both 2-degrees-of-freedom system and 4-degrees-of-freedom system. The instability regions are calculated including the effects of the asymmetry of the rotor support stiffness, the initial intersecting angle between the rotor shaft and the driving or loading shaft, and the gyromoment of the rotor shaft. The relation between the characteristics of instability and the matrix elements of the equation of motion concerning the transmitted torque is investigated and the mechanism of instability due to the transmitted torque is discussed.

Key Words: Vibration of Rotating Body, Constant Velocity Joint, Torque–Whirl, Self–Excited Vibration

1. ま え が き

前報1)では、等速軸線手を介して駆動される片持ちロータの伝達トルクに起因する不安定問題を解析し、伝達トルクによる不安定が軸線手の種類によらず発生することなどを示した。本報では、この伝達トルクによる安定現象をより明確にするため、タービン、圧縮機など機械的仕事に関与する動力機械のデータモデル（Mモデルと略す）と駆動系の伝達軸のデータモデル（Sモデルと略す）を想定し、それぞれ片持ち剛性データモデル（2自由度モデル：M-2モデルおよびS-2モデルと略す））、両支持剛性データモデル（4自由度モデル：M-4モデルおよびS-4モデルと略す）について伝達トルクによる安定問題の解析を行った（図1、3、4、6）。2自由度モデルでは傾き運動のx, y成分の連成による安定性を扱い、4自由度モデルでは傾きおよび横運動のx, y成分の連成による不安定を扱う。ロータ軸に沿う荷重トルクを受けるMモデルと駆動トルクと同じ条件の荷重トルクを受けるSモデルの解析を比較することにより不安定を発生させるトルク成分の特性を明らかにすることができる。

2. な な な

O_{0}-X_{e}Y_{e}Z_{e}	静止座標
O-XYZ	原点をロータ中心にもつO_{0}-X_{e}Y_{e}Z_{e}に平行な座標
O_{0}(O)-xyz	O_{0}-X_{e}Y_{e}Z_{e}(O-XYZ)からオイラーの角α, β回転した座標
α, β	ロータ軸の変位角（オイラーの角）
α_{i}, β_{i}	中間軸の変位角（オイラーの角）
a_{0}, a_{i}	ロータ軸と駆動軸およびロータ軸と動荷軸との初期交差角
φ	ロータ軸の自転角
T_{0}, T_{1}	駆動トルクおよび負荷トルク
I_{p}	ロータ軸の軸まわりの慣性モーメント
I_{i}	ロータ軸のx(y)軸まわりの慣性モーメント
I_{p}^{(y)}	ロータ軸のx(y)軸まわりの慣性モーメント
m	ロータ質量
C_{e}, C_{s}	軸受のα, β方向減衰定数
K_{e}, K_{s}	軸受のα, β方向ばね定数

* 昭和60年10月1日 第63期全国大会講演会において講演、原稿受付 昭和60年1月21日。
** 正員、工業技術院機械技術研究所（毎月05 群馬県新治郡板村並木1-2）。
*** 正員、神戸大学工学部（毎月057 神戸市灘区六甲台町）。

NII-Electronic Library Service
C_a, C_b: 軸受の X_a, Y_a 方向減衰定数(*)
K_a, K_b: 軸受の X_a, Y_a 方向ばね定数(*)
$\sigma = (K_x - K_y) / (K_x + K_y)$ または
$(K_x - K_y) / (K_x + K_y)$
$I = I_x I_y$ または $I_x I_y$
$\omega = (K_x + K_y) / 2I$
$T = \text{時間}$
$\xi = (C_a + C_b) / 2I\omega$
$\tau = T / I \omega$
$\nu = \text{無次元回転数}$
$\sigma = \tan(\alpha / 2), \alpha = \tan(\alpha / 2)$
$(\cdot)' = (\cdot) / dT$
$(\cdot) = d(\cdot) / dt$

式(1)の不安定領域の例を図2に示す。

3-2 S-2モデル 本モデルは2自由度の伝達軸モデルである。駆動条件はM-2モデルと同一である。負荷条件はロータ軸が二つの等速座と中間軸およびスプライ軸等軸方向にスライド可能な要素を介して負荷軸に結合され負荷トルク T_0 を受けるとする（線形近似した運動方程式ではスライド要素はとくに意味がない）。前報に述べた方法により駆動トルクと同様に負荷トルクの影響を考慮すると、ロータ軸に作用する駆動トルクおよび負荷トルクによるモーメントは $O_0 \times O_2$ 成分表示で次式となる。

3-1 M-2モデル 本モデルは2自由度動力機械モデルであり前報で解析したモデルである（図1）。他のモデルと比較のため仮定と結果を簡単に記す。系はロータ軸支持軸受のばね以外はすべて剛とし、円板以外の質量、重力の影響を無視する。負荷軸ばね定数に異方性があるとする。軸受は軸の横変位に伴って軸が軸方向にスライドしない形のものを採り、内部の減衰は無視する。駆動トルク T_0 に等しい負荷トルクが作用し、バイアス角を考慮しないことから、アンバランス応答と等しい応答に寄与しない。

図2 M-2モデルの不安定領域図 $\xi = 0.01$

図1 M-2モデル

図3 S-2モデル
式(2)は \(T_s = T_s' \) のとき第2項の \(x, y \) 成分が一致したトルクが系を不安定にしないことがわかる。\(T_s \neq T_s' \) のときは不安定となる可能性はあるから、この場合 \(\phi \) が一定ならずその解析は本報の目的とずるのでここでは扱わない。

3-3 M-4 モデル
本モデルは4自由度の動力機械モデルである（図4）。4自由度モデルでは数式の簡略化のため駆動トルクと負荷トルクが等しい場合について運動方程式を導く。 \(O_x \)-\(X \)-\(Y \)-\(Z \) に平行なロータ中心を元点とする動座標 \(O-XYZ \) をとり \(O-XYZ \) におけるオライラの角 \(\alpha, \beta, \phi \) によって台軸の傾きおよび自転を表す。駆動側円周角の模変位 \(a, a, a, a, \beta \) で表し、それぞれ、自転角を \(\phi + \gamma_1 \) で表す。ここで \(\gamma_1 \) は第2機の「台軸等対称条件」より \(\alpha, \beta, \gamma_1 \) で表す。\(\gamma_1 \) は第1機の「台軸等対称条件」より \(\alpha, \beta, \gamma_2 \) を用いて表される。第2機および第1機の台軸等対称条件式（3）、式（4）

\[
\begin{align*}
(\overrightarrow{Ox} + \overrightarrow{Ox}) \cdot (\overrightarrow{Ox} + \overrightarrow{Ox}) &= 0 \\
(\overrightarrow{Ox} + \overrightarrow{Ox}) \cdot (\overrightarrow{Ox} + \overrightarrow{Ox}) &= 0
\end{align*}
\]

ここで \(\gamma_1, \gamma_2 \) は台軸を表す

より \(\gamma_1, \gamma_2 \) は次式のように表される

\[
\begin{align*}
\sin \gamma_1 &= \left(\frac{\sin \beta + \sin \beta \sin(\alpha - \alpha)}{1 + \sin \beta + \sin \beta \cos \beta \cos(\alpha - \alpha)} \right) \\
\cos \gamma_1 &= \left(\frac{\cos \beta \cos \beta + (1 + \sin \beta \sin \beta \cos(\alpha - \alpha))}{1 + \sin \beta + \sin \beta \cos \beta \cos(\alpha - \alpha)} \right) \\
\sin \gamma_2 &= \left(\frac{\sin \beta \sin(\alpha + \alpha)}{1 + \cos \beta \cos(\alpha + \alpha)} \right) \\
\cos \gamma_2 &= \left(\frac{\cos \beta \cos(\alpha + \alpha)}{1 + \cos \beta \cos(\alpha + \alpha)} \right)
\end{align*}
\]

伝達トルクに起因するロータ軸へのモーメントおよび力を前報と同じ方法により導く、これらのモーメントおよび力を \(O-xyz \) 成分で \([M_x M_y M_z] [F_x F_y F_z] \) と表し、表を除いた図4の系に仮想仕事の原理を適用すると

\[
T_s(\delta \alpha + \delta \beta) - T_s(\delta \phi + \delta \alpha) = M_x \cos \beta \alpha + M_y \cos \beta \alpha + M_z \sin \beta \alpha + \delta \phi
\]

\[
F_x \delta x + F_y \delta y + F_z \delta z
\]

となる。ここで、\(\delta x, \delta y, \delta z \) は円板中心の変位の変分を表す式（5）、（6）、（7）から \(\gamma_1 \) を求め、\(\delta x, \delta y, \delta z \) を式（7）に代入し、式（7）の両辺を \(\delta a, \delta \beta, \delta \alpha, \delta \gamma_1, \delta \delta \) の係数を等置する。さらに、\(a, \alpha, \beta, \beta \) について線形近似すると式（8）が得られる。ただし、\(F_s = 0 \) はロータ軸の微少運動の仮定より後述の運動方程式から得られる関係である。

\[
\begin{align*}
M_x &= T_s(1 - \frac{I_x \delta \alpha}{I_1}) \left(1 - \frac{I_x \delta \alpha}{I_1} \right) \\
M_y &= T_s(1 + \frac{I_y \delta \alpha}{I_1}) \left(1 + \frac{I_y \delta \alpha}{I_1} \right) \\
F_x &= \frac{T_s(1 + \alpha \delta \alpha / \alpha + \delta \alpha / 2)}{I_1}
\end{align*}
\]

式（8）および線形近似した台軸受力を運動方程式（9）

\[
\begin{align*}
\tau_x &= I_1 F_x(\phi + \delta \phi) \\
\tau_y &= I_1 F_y(\phi + \delta \phi) \\
\tau_z &= I_1 F_z(\phi + \delta \phi)
\end{align*}
\]

ただし、\([\Omega_x \Omega_y \Omega_z] \) は座標系 \(O-xyz \) の角速度、\([\delta x \delta y \delta z] \) はロータ中心 \(O \) の角加速度、\([\tau_x \tau_y \tau_z] \) は全外力モーメントおよび \([F_x F_y F_z] \) は全外力の、それぞれ \(O-xyz \) 成分。

の左辺に代入し、右辺恒性項を線形近似すると \(a, \beta, a, \beta \) に関する線形運動方程式が得られる。ここで、独立変数を \(a, \beta, a, \beta \) から台軸の傾き \(\theta_x, \theta_y \) およびロータ中心の変位 \(x, y \) に変換する。すなわち
\[\theta_0 = \beta, \ \theta_0 = -\alpha \]

\[x = \dot{I}_a\dot{\beta} + I_b\beta, \quad \ddot{y} = -I_1a_1 - I_2a_2 \]

とおくと、運動方程式は次式となる。

\[X'' + CX + (B_a + B)X = D \]

\[\begin{pmatrix}
\theta_x \\
\theta_y \\
x \\
y
\end{pmatrix}
\begin{pmatrix}
\xi \\
\nu \\
\zeta I_0 \\
\zeta I_0
\end{pmatrix}
\begin{pmatrix}
\zeta \\
-\nu \\
0 \\
\zeta I_1 f^2 + \zeta I_1 f^2
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix}
\]

\[B_a = \begin{pmatrix}
1 + \sigma & 0 & 1 + (\sigma) I_0 & 0 \\
0 & 1 - \sigma & 0 & (1 - \sigma) I_0 \\
(1 + \sigma) I_0 f^2 & 0 & (1 + \sigma) I_0 f^2 & 0 \\
0 & (1 - \sigma) I_0 f^2 & 0 & (1 - \sigma) I_0 f^2
\end{pmatrix}
\]

\[B = -\frac{t_0}{2}
\]

\[D = \begin{pmatrix}
-f_1^2 a^2 \\
0 \\
\frac{f_1}{I_1} a^2 \\
0
\end{pmatrix}
\]

ここでは、

\[\nu = \varphi' = \text{一定} \]

\[I_0 = (I_1 - I_0)/(I_1 + I_0) \]

\[I_1 = 2/(I_1 + I_0) \]

式(10)は2自由度系の場合と同様に特性方程式でラウス-フリッツの安定判別条件を満たすれば安定領域が得られるが、数値計算上式(10)を1階の微分方程式に変換し根を固有値として求めるほうが簡単である。ここではこの方法を用いて不安定領域を求めた。图5は\(\sigma \)および\(a_0 \)をパラメータとした不安定領域の計算例を示す。低速域では\(\sigma \)の安定化効果が大きいか、また\(a_0 \)も系を安定化する。ジャイロモーメントを無視した場合の不安定界線は、明らかに、图5の各不安定界線と横軸との交点を通る直線に平行な直線である。それゆえ、ジャイロモーメントが\(\sigma = 0 \)では安定化効果をもつため\(\sigma
eq 0 \)では不安定界線をもつことがわかる。運動方程式(10)から\(I_1 \)が大きい程系が安定になることが予想される。しかし、\(I_1 \to \infty \)とおいた場合の不安定界線を求めると図5と全く変わらない。また、\(I_1 \)を图5の場合の値の1/10としても不安定界線に変化がない（1/100とすると不安定化傾向が認められる）。すなわち、本報で用いた寸法の範囲内では系の不安定に最も影響を与えるのは式(10)の\(B \)の[図図]内の+1, -1の成分であるといえる。なお、運動方程式
(10) で \(\alpha_0 = 0 \) とすれば既報の係数間及び項を除いた系に一致する。

3-4 S-4 モデル 本モデルは 4 自由度の伝達軸モデルである (図 6)。ロータ軸より駆動側は図 4 と同一であり、負荷側は図 3 と同様である (図 3 と同様線形近似方程式ではスライド要素はとくに意味はない)。前節と同様な方法により負荷トルクの影響をも考慮した運動方程式を導くと式 (11) となる。

\[
X'' + CX' + (B_0 + B_1)X = D \quad [X, C, B_1 は式 (10) と同一]
\]

\[
B = \frac{P_0}{2}
\]

\[
D = P_0 \begin{bmatrix}
\frac{\tilde{r}_3}{t_1} a & -\frac{\tilde{r}_3}{t_3} a' & 0 & \left(\frac{\tilde{r}_2}{t_1} - \frac{\tilde{r}_3}{t_3} \right) a'' & 0
\end{bmatrix}
\]

式中、\(P_0 = \sum_{j=1}^{n} P_{0j} \) である。

明らかに \(t_1 \to \infty, t_2 \to \infty \) とおけば \(P_0 \) に関する項は消滅し系は安定になる。不安定領域の計算例を図 7 に示す。この系ではジャイロモーメントは安定性に影響を与えず、また、図 7 より \(\sigma \) および \(\alpha_0, \alpha_1 \) が安定性を全くもたないことがわかる。

4. 考察

不安定領域図 2、5、7 の駆動軸はいずれも傾き運動の固有振動数で無次元化しており不安定境界を定量的に相互比較することができる。これらの図を比較すると次のことといえる。2 自由度モデルのほうが 4 自由度モデルより大略安定である。また、2 自由度モデルについては明らかであるが、4 自由度モデルでも S モデルのほうが M モデルより大略安定である。さらに、軸受剛性異方性は M モデルの場合 2 自由度モデルでは安定性にかなりの効果があるが、4 自由度モデルでは低速域で安定化効果があるものの中、高速域ではほとんど安定化効果がない。一方、S モデルの場合 4 自由度モデルでは軸受剛性異方性が安定化作用をもつ。

初期交差角については M モデルでは安定化効果があるものの 2 自由度系でも 4 自由度系でも顕著な効果はない。また、S-4 モデルでは駆動軸、負荷軸のいずれの初期交差角も不安定化作用をもつ。ジャイロモーメントは M モデルでは軸受剛性に異方性がない場合には...

図 6 S-4 モデル

図 7 S-4 モデルの不安定領域図 (\(\zeta = 0.01 \))
安定化効果、異方性がある場合には不安定化効果をもつ。一方、Sモデルでは系の安定性に影響を及ぼさない。以上のように四つのモデルの間には不安定特性にかなりの差違が存在するが、運動方程式の適用部分の関連を考察する。前述のように2自由度モデルの場合SモデルではMモデルで現れる振動トルクの不安定化成分、すなわち、式(11)のBのクロス項の非対称成分+1，-1，が負荷トルクによって安定化（対称化）されている。4自由度モデルの場合はSモデルでも不安定が発生し負荷トルクによって振動トルクの不安定化成分が完全に打消されるのには、これら2自由度モデルと4自由度モデルでは不安定の機構に差違があるためであると考えられる。すなわち、M-4モデルでは式(11)のBの右から左にならぶ対角成分（逆対角成分と呼ぶ）の非対称性による不安定と傾き振動のみに関する内内の非対称性による不安定であると考えられる。M-4モデルでは内内の部分は2自由度モデルの場合に似て負荷トルクによる安定化（対称化）される（式(10)では内内の部に非対称成分+1，-1を含むが式(11)では内内の部に非対称成分が存在しない）が逆対角成分は打消され加算された形で存在する。図7において、α₀=α₀'=60°の場合が最も不安定であることより式(11)のBの逆対角成分がS-4モデルロータの不安定を発生させていることがわかる。4自由度モデルの場合、上述のようにMモデルとSモデルでは軸受動性異方性、初期交差角およびジャイロモーメントの安定性に及ぼす影響は全く異なっており、これらの差違は式(10)および式(11)のBの内内の成分の差違によるものと考えられる。なぜならば式(10)，式(11)の内内の以外の成分は絶対値は異なるものの符号は同一であり安定性に定性的な差違を発生させる成分とは考えられないからである。

5．まとめ

等速旋回を介して駆動されるロータ系の四つのモデル、片持ち動力機械モデルおよび伝達軸モデル、両支持動力機械モデルおよび伝達軸モデルに対して伝達トルクに起因する不安定を解析した結果、以下のことが明らかになった。

(1) 片持ち伝達軸モデルロータ以外の系では伝達トルクにより不安定が発生する。
(2) 片持ちロータの両支持ロータより大略安定である。
(3) 伝達軸モデルロータのほうが動力機械モデルロータより大略安定である。
(4) 動力機械モデルでは軸受動性異方性、初期交差角が安定化効果をもつが、伝達軸モデルでは両支持ロータの場合不安定効果をもつ。
(5) 動力機械モデルではジャイロモーメントが安定性に影響を及ぼすが、伝達軸モデルでは影響を及ぼさない。

文献

(1) 西脇・岩塚、機論、51-470、C（昭60）、2473。
(2) 例えば、Wells、D.A., Lagrangian Dynamics, (1967), 176, McGraw-Hill。
(3) 西脇・岩塚、機論、50-455、C（昭59）、1158。

討論

【質問】黒橋道也
【（株）神戸製鋼機械研究所】
四自由度の場合、MモデルとSモデルでは軸受動性異方性の安定性への影響が全く異なるという興味ある結果を得ている。これについて、マトリックスBの成分の差異によるものと述べられているが、物理的にはどのように解釈すればよいかご教示いただきたいた。
【回答】ご質問の点については明確に回答できているが、現在のところ次のように考えている。
本報で計算した不安定領域は特性方程式の根の実部の符号ののみを判断して決定したものであるため振動数成分は考慮していない。ところが解析結果から考えるとジャイロモーメントの影響が全く異なるなど系の振動数成分も不安定特性に影響を与えるように考えられる。つまりMモデルとSモデルの不安定傾向の違いは不安定領域での振動特性の差違、すなわちMモデルでは前報の結果から考えると振動的な発散が起こっていると考えられるが、Sモデルでは必ずしもそのようになっていないのではないかと考えている。
この点については今後検討を加える予定である。