The Influences of Race Failure on Ball Motions in a Radial Ball Bearing under Static Moment Loading

by Hiroomi MIYAGAWA, Keiji IMADO, and Kazuaki KAWAKITA

In recent years, a new measuring method utilizing the Hall effect for three-dimensional ball motion has been developed. The reliability of the data was confirmed by comparing the data obtained by this new method with those obtained by the induction coil method. The components of the angular velocity of ball motion and the alteration of contact angle during one cage revolution were analyzed, based on the data by the new method, and the influences of race failure on ball motion under static moment loading were investigated.

Key Words: Hall Effect, Three Dimensional Ball Motion, Ball Bearing, Race Failure, Magnetic Induction Coil

1. 論 言

これまでに、玉軸受の玉の運動を実験的に明らかにする試みは、高速カメラによる Shevchenko ら(1)、電磁誘導(2)を用いた平野らによる研究があるものの、これらは方法では玉の運動を三次元的に検出できなかった。したがって実際の玉の挙動の解析にはまだ十分な部分が多く残されている。

近年、ホール効果を利用して三次元的なボール運動の検出が可能となった(3)。本報では、まず従来の電磁誘導による検出法とホール素子による検出法について、その検出出力の対応を調べ、これが十分な精度で一致することを確認した。ついて従来ほとんど報告のない軸受軌道面損傷と玉運動との関係に着眼して実験を行った。その結果、損傷が玉運動に与えている種々の影響についていくつかの実験的知見を得た。

なお、検出出力の解析においてホール素子出力の不平衡電圧の処理、およびベクトル解析の手法に一部改良を行った。

2. 玉の運動検出法

すでに詳細は報告したので(4)(5)検出法について以下簡単に述べる。図1に示すように磁界において、ホール素子は次式のホール電圧を発生する。

\[V_h = (R_h/b)I_h B \cos \theta_h \]

ここで、\(R_h, b \) はホール係数、\(\theta_h \) は素子の厚さで、制御電流 \(I_h \)、磁束密度 \(B \) を一定にすれば、\(V_h \) および \(\theta_h \) すなわち磁束の方向が求まる。図2のように、軸受に組み込んだ磁化玉の中心 \(O \) を原点とし、\(x \) 軸（軸方向）、\(y \) 軸（玉回転方向）、\(z \) 軸（ラジアル方向）にホール素子を配置すれば、磁束の各方向成分 \(V_x, V_y, V_z \) が式(2)～式(4)より得られる。

\[V_x = a \cos \alpha_n + E_x \]

\[V_y = b \cos \beta_n + E_y \]

図1 ホール効果
3. 玉自転角速度成分の理論解析

図2および（2）〜（4）より次式の関係が成り立つ。

\[
\left(\frac{V_{ix}}{a} \right)^2 + \left(\frac{V_{iy}}{b} \right)^2 + \left(\frac{V_{iz}}{c} \right)^2 = 1 \cdots (5)
\]

ここに \(V_{ix}, V_{iy}, V_{iz} \) は、各々の磁極

玉表面の磁極 \(N \) 点の位置ベクトル \(\vec{N} \) は、玉の半径を \(r \) とすれば次式となる。

\[
\vec{N} = r \begin{pmatrix} i \cos \alpha_n + j \cos \beta_n + k \cos \gamma_n \\ \omega_n \end{pmatrix}
\]

玉の自転角速度 \(\vec{\omega}_b \) は、各々の方向成分を \(\omega_x, \omega_y, \omega_z \) とすれば

\[
\vec{\omega}_b = \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}
\]

N 点の速度 \(\vec{V}_n \) は

\[
\vec{V}_n = \vec{\omega}_b \times \vec{N} = r \begin{pmatrix} i & j & k \\ \omega_x & \omega_y & \omega_z \\ \frac{V_{ix}}{a} & \frac{V_{iy}}{b} & \frac{V_{iz}}{c} \end{pmatrix}
\]

また \(\vec{V}_n \) は式（6）を時間 \(t \) で微分して

\[
\vec{V}_n = \frac{d \vec{V}_n}{dt}
\]

\[
= r \begin{pmatrix} \frac{V_{ix}}{a} \frac{V_{iy}}{b} \frac{V_{iz}}{c} \\ \omega_x \omega_y \omega_z \\ \frac{dV_{ix}}{dt} \frac{dV_{iy}}{dt} \frac{dV_{iz}}{dt} \end{pmatrix}
\]

いま図4に示すように、磁極 \(N \) 点が一定の \(\omega_b \) で

\(\vec{N}_1 \to \vec{N}_2 \to \vec{N}_3 \) と変化したとすれば、\(\vec{\omega}_b \) の方向は式

\[
\vec{\omega} = (il + jm + kn)/\sqrt{l^2 + m^2 + n^2} = \vec{\omega}_b
\]
4. 実験装置および試験軸受

図6に実験装置の外観を示す。玉軸受（保持器回転）はスリップリング部に取付けた微小磁石とホール素子によって検出し、軸回転検出も同様な方法によった。

試験軸受は、深溝玉軸受ベアリング6307、黄鋼オイル保持器付で、その主部品を表1に示す。試験軸受としては、未使用の軸受と、前もって軸受面に損傷を与えた軸受を用いた。なお損傷は適度な潤滑溶下条件で、基本静定荷重C0以上のラジアル荷重で運転して与えた。

図7は未使用の軸受と損傷を与えた内軸軸受の表面写真および断面形状を示したものである。

潤滑油は#1スビンドル用油を用い、油温23℃とし給油量60 cc/分でノズル給油を行った。

コイルによる検出し力とホール素子による検出し力の比較対応は、ラジアル荷重P=490 N一定、軸回転数Nt=100, 500, 1,000, 1,500, 2,000 rpmの実験条件で行った。

また玉軸受に及ぼす軸受面損傷の影響は、静モーメント荷重Ms=15 N・m一定、Nt=100 rpm一定の条件で調べた。

5. 実験結果および考察

5-1 電磁誘導（コイル）利用検出法とホール効果（ホール素子）利用検出法の対応 図8は検出コイルに

表1 試験軸受主要寸法

<table>
<thead>
<tr>
<th>Test bearing</th>
<th># 6307</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch circle dia.</td>
<td>57.981 mm</td>
</tr>
<tr>
<td>Number of balls</td>
<td>8</td>
</tr>
<tr>
<td>Radial clearance</td>
<td>0.010 mm</td>
</tr>
<tr>
<td>Inner race dia.</td>
<td>44.481 mm</td>
</tr>
<tr>
<td>Outer race dia.</td>
<td>71.482 mm</td>
</tr>
<tr>
<td>Ball diameter</td>
<td>13.494 mm</td>
</tr>
<tr>
<td>Cage</td>
<td>Machined brass</td>
</tr>
</tbody>
</table>
玉軸受の玉の運動に及ぼす軸受軌道面損傷の影響

図8 コイルとホール素子による検出波形

図9 玉運動の検出出力変化

図10 公転中の玉自転角速度の変化
玉軸受の玉の運動に及ぼす軸受軌道面損傷の影響

図11 玉と内外輪の接触角の変化

6. 結 言

電磁誘導利用の検出法と、ホール効果利用の検出法の対応について調べた結果、両者の検出特性はよく一致しており、従来の方法による玉軸受の玉の運動解析は十分に妥当なものであることが確認できた。

さらにホール素子利用方式で得たデータを基に、玉の運動を三次元的に解析したが、そのさい従来の手法に一部改良を加えた。

モーメント荷重条件での玉運動に及ぼす軌道面損傷の影響を、玉軸自転角速度成分、および一公転中の玉の接触角の変化によって実験的に検討した。その結果、軌道面損傷が接触角、自転角速度に与える影響を明らかにすることがわかった。

文 献
(2) 平野・田上, 機論, 27-178 (昭36), 934.

討 論
(質問) 清水信行（千代田化工建設（株））
論文の主張はホール効果を使った新しい計測法にあるのか。それともこれを使用して軸受軌道面損傷の検討を行った結果にあるのかお聞かせ願いたい。
(回答) 本論文の主張はホール素子利用方式によって電磁誘導利用方式による運動解析の妥当性を確認し、さらに軸モーメント荷重を受ける玉軸受の玉の運動に及ぼす軸受軌道面損傷の影響について検討した点にある。