Aerodynamic noise radiation from a circular cutting tool
(Correlation of aerodynamic noise and a flow of neighboring tooth model)

Kensaku YANAGIMOTO, Takasi OGINO, and Ryoichi ICHIMIYA

The analysis of aerodynamic noise radiation from a circular cutting tool with a columnar tool model is made. Particularly, this experiment deals with a circular cutting tool with a tooth length of 14.3% to 47.6% of tool diameter. Correlations between aerodynamic noise and the flow of neighboring tooth model that is a noise source are clarified. From the experimental results, an aerodynamic noise spectrum at farfield agrees with spectrum distribution of the vortex that was generated behind columnar tooth model, and a principal noise source distributed at an appointed end of the tool. A spectrum distribution behind a tooth model that is calculated by a tangential velocity of flow on the tooth model and a velocity of inflow to the tooth model agrees with experimental results.

Key Words: Machine Tool, Aerodynamic Noise, Noise Source Prediction, Circular Cutting Tool, Saw Model, Vortex

1. まえがき

最近、機械工場内における騒音において防音対策および騒音低減の観点から工場を設計する段階で工場内の音圧レベル分布を予測しようとする試みが行われている(1)。さらに精度よく音圧レベル分布を予測するためには騒音源である工作機械の空運転音や加工音も予測できことが必要となる。また、高速回転する円板状工具からの放射される切削音はきわめて大きく工場騒音の大きな要因となり、作業者の健康に少なからず影響を及ぼしている。そこで、本研究は機械の高速化に伴い空運転音の要因となる回転工具、特に刃のついた円板状工具から放射される空気力学的騒音を予測することを目的とした。

刃先円板状工具および発生する主な空気力学的騒音は大きく次の二つに分けて考えることができる。一つは空気流の変動により刃先およびソープレードが脈動されることによる振動音、他的一つは刃先が空気をきるときに、空気のじょう乱による圧力変動音が音のエネルギーに变换される流体音である。前者の振動音は、刃を硬いカラーで仕上げて使用したり、減衰率の高い材料を使用することなどである程度低下可能である。そこで、後者の流体音、つまり切削音が工具の空運転時の騒音に大きな割合を占めると考えられる。

回転工具から放射される騒音に関する報告の多くが円形の空運転音におけるものであり(3)，刃部長さの工具直径に占める割合が、5.4〜7.0%が多く小さい。また、刃先形状の影響から刃先寸法が音場に対してどのように関与しているのか明確ではない。

本報告は、刃形モデルとして流れに対して形状の鈍い円柱刃を用い、刃形長さが工具直径に対して占める割合が、14.3〜47.6%で広い範囲で実験を行い、刃形近傍流れが音場に及ぼす影響を調べた。その結果、音源となる刃形後方における流れのスペクトル分布が音場に及ぼす影響を明らかにするとともに、刃形への流入速度から容易に音源のスペクトル分布が予測可能であり、新しい多くの知見を得ることができた。

2. ま え か な き

l: 円柱刃の長さ

d: 円柱刃の外径
t: ソープレードの厚さ
D: ソープレードの直径
D_0: ソーモデルの直径
N: 丸数
e: 刃先端の開け合い角 $= \pi \cdot D_0 / N - d$
U_0: ソープレードの刃先端の周速度
U_r: 刃先端の逆速度
Re: レイノルズ数 $= U_0 d / v$
St: ストローハル数 $= f d / U_0$
f: 風切音の卓越周波数

3. 実験方法

実験方法の概要を図1に示す。ソーモデルは、無段変速機が可能なモーターによって駆動される。回転条件としては回転数を1000～4500 r/minの範囲で変化させて測定を行い、駆動系およびソーモデルが共振しない条件を選んでいる。ソーモデルとしては、直径220 mmないし240 mm、厚さ10 mmの工業用ブリスタック円板に、黄鋼およびアルミニウム材を加工した円柱形ソーモデルを取付けたものを使用した。円柱形ソーモデルの長さは20～100 mm、外径は3～12 mmであり、特に記していないものはソープレード径$D=220$ mm、厚さ$t=22$ mm、円柱形ソーモデルの外径$d=6$ mmのモデルを使用している。

また、ソープレードの振動による発生音をできるだけ低減させるため、ブレードの両側からブレードと同径の防振ゴムおよび厚さ5 mmの防振合金板でされている。ソープレードの側面に取付けた小形振動加速度計により各回転数におけるブレードの振動を周波数分析した結果、振動の卓越周波数は風切音の卓越周波数に比べて十分低い所に現れ、レベルも小さいことが確認されている。また、うず振動によるロックイン現象も現れなかった。音の測定の際、モーターや吸音などの振動音を遮音するため、ソーモデルは、1.8×1.8×1.8 mの半無響箱の中に入れて実験した。

風切音は、ソーモデルの平面の中央から垂直上方300 mmの位置において、1/2 inch コンデンサマイクロホンにより集音し、精密騒音計、周波数分析器を通じてヘルプコーダおよびデータレコーダに記録した。また、円柱形ソーモデル後方にできるうずの発生周波数を求めるために、ソーモデルにホットワイヤーボープを取付け、流動速度計の信号からパーソナルコンピュータによって波形解析を行っている。ブローチは、図2に示したようにソープレードに取付けている。刃形モデル前方に取付けたブローチにより刃形への空気流平均速度を測定し、また刃形後方には取付けた平行流形ブローチにより後流うずの影響を測定している。

4. 実験結果および考察

4-1 刃形近傍における流れ 刃形から放出されるうずの観察観察するために、光明管をターピン油で溶かしたものを刃形に塗布し、一定時間回転させた後、よく離角を求める。よく離角は刃形の刃先端にいくほど小さくなり、刃間隔が大きいほどN=2の場合、Re=4.9×10^5～5.2×10^6の範囲において、$U_0/l_0=0.25$では$\theta\approx90^\circ$、$U_0/l_0=1$では$\theta\approx80^\circ$となっていった。また、刃間隔の変化によるよく離角の変化は、刃間隔が大きくなるほどよく離角は大きくなり、よく離角は大きくなる。例えば、$U_0/l_0=1.0$の測定点においてN=40の場合$\theta\approx100^\circ$となっていった。

刃形への空気流分布、流れ速度分布を測定するために図2に示したようにブローチをソープレードに取付け、刃形の長さ方向に対して2.5 mm間隔でブローチを平行に移動することによって平均速度分布を求めた。図3は、刃形近傍における流速分布、流れ速度分布を示したもので、主回転数2300 r/min、$l=40$ mm、$d=6$ mmの刃形を用いている。測定点は図に示したように、刃形の中心を原点として刃形の接線方向

図1 実験方法概要図

図2 ブローチの取付け方法
円板状工具から放射される風切音に関する研究

および法線方向の座標をそれぞれ \(y, z \) とした。また、
破線は刃形の接線速度を示したもので、各測定点にお
ける回転速度と一致する。

刃数が少なく刃間隔が非常に大きい \(b_1/d =
38.3(N=4) \) の場合、刃形接線方向の B 点 \((z=0.5d, y
=-1.33d)\) における流入速度および外部の C 点 \((z=
1.0d, y=-1.33d)\) における速度分布は、刃形の接線
速度分布と類似しているが、刃数が少なく刃間隔が小さ
い \(b_1/d =4.2(N=30) \) の場合、刃形に近い空気のじ
う乱が大きくなり、B、C 点における速度は接線速度
よりも大きくなっている。刃形後方の D 点 \((z=0.5d,
\ y=0.85d)\) における流出速度は、刃形の先端に近いほど
小さくなり、\(b_1/l =0.875\sim 0.938 \) で落ち込んでいる。
これは刃形の先端面からの吹き降ろし流れによる微
う乱の影響により流出流速が相殺されるためと考えられ
る(3)。

図 4 は、刃形の中心軸に対して水平な方向から流入
する A 点 \((z=0, y=-1.33d)\) での水平速度分布を
求めたもので、刃間隔を種々変化させている。また、
破線は刃形の接線速度を示したものである。刃間隔
が大きい場合、例えば \(b_1/d =38.3(N=4) \) では刃形の先
端において流入速度は接線速度と一致し、刃元に近く
に従って小さくなっている。刃間隔 \(b_1 \) の値が小さく
なるに従って流入速度分布も低下していくが、\(b_1/d
=12.1(N=12) \) より小さくなると流入速度は、かえっ
て上昇している。これは、刃数が増える刃間隔が小さ
くなると、刃による空気のじょう乱が大きくなること
と、はく離点が遅くなることにより A 点における刃
形の中心部への流入平均速度も上昇するものと考えられ
る。

4・2 刃形後方スペクトル分布と音場との相関

次に、音源となる刃形後方に発生するうずの周波数が、
音場における風切音のスペクトル分布とどのような相
関にあるのかを調べた。図 5 は、ソーブレードの径を
240mm、刃形長さを種々変化させたソーブレードを用
い、主軸回転数を 2300 r/min と一定にしたときの風
切音のスペクトル分布の変化を示したものである。こ
の運転条件の場合、風切音のスペクトルは
600～1 300 Hz の範囲で最大となり、刃形長さが長くなる
ほど卓越周波数は高いほうへ移動するとともに、スペ
クトルの分布幅も広くなっている。これに対して図 6
は、刃形後方から放出されるうずのうちで風切音と相
円板状工具から放射される風切音に関する研究

円板状工具から放射される風切音の発生周波数について、刃形の長手方向における分布を示したものである。測定方法は、図2に示したように刃形後方 (x=0, y=2.5d) の位置に置かれた平行流形のプローブを刃形の長手方向に平行移動し、刃形後方の空気流の変動と風切音とのクロススペクトルを計算して、最も相関の強い周波数を各測定点について示したものである。この刃形後方のクロススペクトル分布と、音場における風切音のスペクトル分布との対応を見る刃形後方のスペクトルは刃形先端に行くほど周波数は上昇し、風切音のスペクトル分布における卓越周波数と一致している。

4.3 St 数に及ぼす刃形形状の影響　このように刃形先端後方から放出される周波数の発生周波数と風切音のスペクトル分布における卓越周波数とが一致することから、刃形先端の周速度をもとにしてストローハル数 St=ν/dUc を計算した。

4.3.1 刃形長さ、刃形の外径変化の影響　ソーモデルの主軸回転数を1000～3700 r/min の範囲で100 r/min ずつ変化させ、そのときの風切音の卓越周波数のうちレベルの大きいものから順に f1, f2, f3 とすると、図9のように風切音の卓越周波数は、刃形先端の周速度の増加に伴い、ほぼ直線的に上昇していく。図7は刃形長さ、刃形の外径を種々変化させ、各刃形条件のもとに図9のような周速度に対する卓越周波数の関係を求め、各周速度から計算されたストローハル数を平均したものである。刃形長さおよび刃形の外径の変化に対してストローハル数の変化は小さく、St = 0.141～0.156 の範囲の値をとっている。

4.3.2 刃の間隔変化の影響　同様に刃数を変え、刃の間隔を変化させるとストローハル数は図8のように変化する。h/d ≤ 20 の範囲では、刃の間隔の増加に伴いストローハル数は小さくなっていくが、ある刃間隔のところでストローハル数の波動現象が生じている。例えば、波動現象の生じる h/d = 6.9 では、この前後の h/d = 5.5 と 7.7 におけるストローハル数に近い値のストローハル数が二つ存在していた。

図9は、この現象の前後の h/d における周速度と卓越周波数との関係を示しており、卓越周波数においてレベルの高い順に f1, f2, f3 として示している。図9 (a) h/d = 7.7 と図9 (c) h/d = 5.5 では、卓越周波数のうちレベルの大きいものから順に f1, f2, f3 とすると、図9のように風切音の卓越周波数は、刃形先端の周速度の増加に伴い、ほぼ直線的に上昇していく。図7は刃形長さ、刃形の外径を種々変化させ、各刃形条件のもとに図9のような周速度に対する卓越周波数の関係を求め、各周速度から計算されたストローハル数を平均したものである。刃形長さおよび刃形の外径の変化に対してストローハル数の変化は小さく、St = 0.141～0.156 の範囲の値をとっている。

4.3.2 刃の間隔変化の影響　同様に刃数を変え、刃の間隔を変化させるとストローハル数は図8のように変化する。h/d ≤ 20 の範囲では、刃の間隔の増加に伴いストローハル数は小さくなっていくが、ある刃間隔のところでストローハル数の波動現象が生じている。例えば、波動現象の生じる h/d = 6.9 では、この前後の h/d = 5.5 と 7.7 におけるストローハル数に近い値のストローハル数が二つ存在していた。

図9は、この現象の前後の h/d における周速度と卓越周波数との関係を示しており、卓越周波数においてレベルの高い順に f1, f2, f3 として示している。図9 (a) h/d = 7.7 と図9 (c) h/d = 5.5 では、卓越周波数
円板状工具から放射される風切音に関する研究

\[f_i = \frac{St}{U_i/d} \] \hspace{1cm} (1)
\[f_i = \frac{St}{U_i/d} \] \hspace{1cm} (2)

図 10 は、式を用いて図 4 に示した接線速度および流入速度分布から円板後方のスペクトル分布を計算した結果である。また、実験から求めた発生するうずと風切音との関係をスペクトルにおいて、レベルの大きな順に周波数 \(f_1, f_2, f_3 \) をプロットして比較してみると、実験値は、接線速度および流入速度から計算された周波数の上限、下限内に分布していることがわかる。

5. おわりに

刃付円板状工具から放射される風切音について、流れに対して形状の薄い円柱刃形モデルを用い、刃形近傍の流れと風切音との関係を明確にし、以下の結論を得た。

（1）風切音の音場におけるスペクトル分布と刃形後方で発生するうずのスペクトル分布は対応し、風切音の卓越周波数は刃形先端後方付近におけるうずの発生周波数と一致する。

（2）刃形形状のストローハル数への影響について、刃形長さおよび刃形の外径変化に対するストローハル数の変化は小さく、例えば、\(\delta_0/d = 77.5 \) (\(N = 2 \)) の場合、\(St = 0.141 \) ～ 0.156 の範囲にあった。しかし、刃間隔の変化によるストローハル数への影響は大きく、また、刃間隔が \(\delta_0/d = 6.9, 12.1, 18.6 \) のとき、ストローハル数の変化が現れた。

（3）刃形への流入速度および接線速度から刃形前方における流後流のスペクトル分布を計算した結果、測定値はこの計算値を上限、下限とする範囲内に分布していた。よって、音源となる刃形後方のスペクトル分布が流入速度分布および接線速度から比較的簡単に予測可能である。

文献

（1）内村・三込. 機論, 52-476, C (昭 61), 1329.
（4）五十嵐・鈴木. 機論, 50-451, B (昭 59), 624.