普遍的方

法による回転機危険速度通過時
非定常最大値の定式化
(第1報、多変量多項式による近似)

松浦克昌*1

An Universal Method for Formulating Transient Maximum Values
of a Rotor Passing Critical Speed
(1st Report, Approximation by Multivariate Polynomial)

Katsumasa MATSUURA

A computerized method for systematically formulating nonstationary values such as maximum
displacement, critical speed and maximum dynamic load torque, generated when a rotor passes its
critical speed is described in this paper. The multivariate polynomial and the least square method
are used in this method’s formulations. The practical approximate formulae are introduced for a
basic rotor model with 3 parameters. Quadratic curves on both or half-sided logarithmic coordinates
are used for the approximation formulae. The effective performance of this method in systematically
obtaining the highly accurate approximation formula is demonstrated in this paper.

Key Words: Rotating Body, Critical Speed, Vibration, Transient Motion, Least Square Method,
Multivariate Polynomial, Dynamic Load Torque

1. 緒 言

回転機の危険速度通過時非定常応答は定常応答と異なり解析解が得られず，解析解がばらばらを得ない
点に見通しの悪さがある。図1のところ両応答は線
衰の小さい場合に大きな差異を生じるが，非定常応答
解析は不可欠であるが，特に最大変位などのピーク
値は機械の大きさを決めるうえで重要である。したが
ってピーク値をまとめ，パラメータとの関係を通過し
よく定式化し，近似式を得る研究が多く報告されてい
る(12)-(13)

これらの研究に対する問題はパラメータの数が少
なく，精々二つの近似式にとどまっていることおよ
び近似式誘導の方法が必ずしも明確，普通のためでなく，
適用範囲の拡張や変更，高精度化，さらにはパラメー
タの多い複雑な系での近似式誘導などのニーズに対応
できない点にある。著者も3パラメータ系の最大動的
負荷トルク評価値（近似式）を導出したが(12)-(13)。2パ
ラメータ系の最大変位近似式を繊り込んだもので，
精度，適用範囲を変更する場面に問題があった。

本研究はこれらの問題点にかかって，近似式誘導
のはん用的方法を検討したものである，まず近似式の
形を多変量多項式で統一的に与え，最小二乗法により
高精度近似式を得る。この方法は適用範囲内の全データ
を用いて定式化するため，広範囲のデータに対して
その発生誤差は小さくして全体としてパラメータの取れ
たものになる。適用範囲を変更，拘束条件を与えても
近似式が系統的に求まる。パラメータ数増加に対して
同じ手法で定式化できる。デメリットは近似式が複
雑になることであるが，パーソナルコンピュータ時代
の今日では数式が整っている事はメリットであり，複
雑さの問題は小さい。

3パラメータの不釣合払いロータ系に本方式を適

图 1 非定常応答と定常応答（変位）の比較
2. 普遍的方法による非定常最大値の定式化

ここではまず、ロータ危険速度通過時非定常値を数値実験で求めるための3パラメータ運動方程式を導く。次に非定常最大値を定式化するための近似式の形を、数学的に導かれる小二乗法を用いた近似式導出の普遍的手法を示す。3, 4 章でデータ収集の方法や近似式の次数を検討し、本普遍的手法を適用して、実用近似式を導く。

2-1 運動方程式と数値計算法 回転不釣合いを除く機械的要因を考慮した、二次元平面内で運動する軸対称ロータ系を考え、軸心を z 軸、y 軸とし、x 軸に作用する外力、減衰係数を z, y 方向で等しく、k, c とする。ロータ全体質量を M と、軸周り慣性モーメントを Ia とし、m, e, n は不釣合いの質量、回転半径、回転角とする運動エネルギー T, 位置エネルギーユー U、消費エネルギーユー Dn は式(1)のとおり。

\[
T = \frac{1}{2} M (x^2 + y^2) + \frac{1}{2} I a \dot{x}^2 + \frac{1}{2} m (x^2 + y^2) \\
X = x + e \cos \eta, \quad Y = y + e \sin \eta \\
U = \frac{1}{2} k (x^2 + y^2), \quad Dn = \frac{1}{2} c (x^2 + y^2)
\]

(1)

\[
\frac{d}{dt} \frac{\partial T}{\partial \dot{q}} - \frac{\partial T}{\partial q} + \frac{\partial U}{\partial \dot{q}} = Qn
\]

(2)

式(2)のラグランジアンで、外力 Qn = 0、Qn = T(回転トルク) とする運動方程式は次のとおり。

\[
(M + m) \ddot{x} + c \dot{x} + kx = me(\dot{z}^2 - j^* z) e^{-\psi} \\
(Ia + me^2) \ddot{z} = Tc - (j^* 2m) \{2 \dot{x} e^{-\psi} - \dot{z} e^{-2\psi}\} \\
\]

(3)

ここで、\(e = \sqrt{\frac{k}{M + m}}\), \(j = c^2 \sqrt{\frac{k}{M + m}}\), \(a = f_k/h\), \(e = me(\dot{z}^2 - j^* z) e^{-\psi}\)，等が定義される。\(R^2 = 2 \pi \rho\), \(\mu = (me^2/3)(m M + m + Ia)\), \(R = e, \rho = \omega^2\)。

(4)

と置くと無次元時間 \(\tau\) に関する運動方程式(5)を得る。

\[
\ddot{z} + 2j^* R + R = (j^* 2m) \{2 \dot{x} e^{-\psi} - \dot{z} e^{-2\psi}\} \\
\psi = (1/2 \pi \rho) - (j^* 2m) \left(\frac{\dot{R} e^{-\psi} - \dot{R} e^{-2\psi}}{2} \right)
\]

(5)

初期値は振動前の定常値でも良いが、ここでは変位、速度とも零とし、ルンゲ・クタ・ギル法で数値解析した。

2-2 近似式の形 計算データは系の減衰比 \(\zeta\)、加速係数 \(\alpha\)、アンバランス定数 \(\mu\) の3定数であり、応答はこの3定数で決まる。

最大変位などの近似式の形は基本的にはこれらの定数の変数近似とするが、できるだけ簡単な低次近似式とするため、被近似値 \(\rho_{max}\) は対数値をとり、3 定数の各値の積として、近似式を次の形に与える。

\[
\log(\rho_{max}) = f(\alpha) \cdot g(\mu) \cdot h(\zeta)
\]

(6)

系の減衰比 \(\zeta\)、アンバランス定数 \(\mu\) は零を含む定数であるため、関数 \(f(\zeta), g(\mu)\) は横軸上間隔目盛の半対数座標上で多項式曲線となる形近似式を与える。

\[
f(\zeta) = \sum_{k=1}^{N} \alpha_k \zeta^{k-1}, \quad g(\mu) = \sum_{l=1}^{N} \beta_l \mu^{l-1}
\]

(7)

加速係数 \(\zeta\) は零を含まず常に正数、変数値も大きいため、両対数座標軸上で多項式曲線近似する。

\[
h(\zeta) = \sum_{k=1}^{N} c_k (\log \zeta)^{k-1}
\]

(8)

式(7), (8)を式(6)に代入して、近似式を得る。

\[
\log(\rho_{max}) = \sum_{k=1}^{N} \alpha_k X_k \cdot D(l) = \sum_{k=1}^{N} \sum_{l=1}^{N} X_{kl} \cdot D(l)
\]

\[
I = i + (i-1) + (j-1)k
\]

\[
X_{kl} = a_{kl} \cdot b
\]

\[
D(l) = \mu^{l-1} \cdot (\log \zeta)^{k-1}
\]

(9)

係数 \(X_{kl}(l=1 \sim L)\) を最小二乗法で求める。ただし、

\[
\lim_{x \to +} x = 1.0
\]

(10)

2-3 最小二乗法による近似式の誘導 式(5)の数値解析より得られる数値実験データ \(\rho_{\text{max}}\) の対数値にデータ符号を添えて \(y_n\) と書く。

\[
Y_n = [\log(\rho_{\text{max}})] \quad (n = 1, 2, \ldots, N)
\]

(11)

数値実験値 \(y_n\) の式(9)第1式左辺近似値との差の二乗和を \(Q\) とし、データ総数を \(N\) とすると、

\[
Q = \sum_{n=1}^{N} \left(Y_n - \left(\sum_{k=1}^{N} X_{kl} \cdot D(l) \right) \right)^2
\]

(12)

となる。\(Q\) を最小とする係数 \(\hat{x}_l\) は

\[
\delta Q / \delta \hat{x}_l = 0 \quad (\lambda = 1 \sim L)
\]
普通的方法による回転機危険速度通過時非定常最大値の定式化（第1報）

\[\sum_{k=1}^{n} \left(Y_k - \frac{1}{2} A_k \right) D_k(l) \cdot \bar{X} = \sum_{k=1}^{n} \left(Y_k - D_k(l) \right) A_k(l) = 0 \quad (13) \]

となる。式（13）は次のごとく書き直される。

\[A_k(l) = D_k(l) - D_k(l) \quad (14) \]

\[\bar{X} = \frac{1}{2} \sum_{k=1}^{n} A_k(l) \cdot \bar{X} = \frac{1}{2} \sum_{k=1}^{n} \left(Y_k - D_k(l) \right) A_k(l) \quad (15) \]

そこで、式（9）の左辺を、式（15）の右辺→式（9）に代入して \(\rho_{\text{max}} \) が得られる。

3. 理想駆動源の最大変位近似式

式（5）で \(\mu = 0 \) は動的負荷を生じない。無負荷状態を示すが、これに理想駆動源の状態と言う。従来の最大変位近似式はすべてこの状態で得られている。

図 2 は \(\mu = 0 \) 時の最大変位数値実験値 \(\rho_{\text{max}} \) と減衰比 \(\xi \) の関係を加速係数 \(q \) をパラメータとして示す。綱軸は对数目盛で与えており、最大変位と減衰比は半対数グラフ上に二次曲線近似できる。また、減衰比 \(\xi \) をパラメータとして、最大変位と加速係数 \(q \) の関係は両対数グラフ上に二次曲線近似できる。ただし \(\xi = 0 \) ではこの関係は直線状になる。この場合、近似式は式（9）で \(\xi = 0 \)、(log \(q \)) に関して \(f = 3, k = 3, \mu = 1 \) に関しては \(\mu = 0, f = 1 \)、\(\lim_{\rho \to 0} \rho = 1 \) となる。

計算データとして \(q = 2^n (n = -1 \sim 8) \) の10点、\(\xi = 0.02(n-1) (n = 1 \sim 11) \) の11点、合計110個の最大変位数値実験値を用いた近似式が得られている。

\[\rho_{\text{max}} = 10^4, \ A = \left(0.65 - 1.57 \xi + 1.14 \xi^2 \right) \]

\[+ \log(q)(0.44 - 2.42 \xi + 2.59 \xi^2) \]

\[+ \log(q)^2(-0.01 - 1.10 \xi + 5.41 \xi^2) \]

\[0.5 \leq q \leq 256, \ 0 \leq \xi \leq 0.2 \quad (16) \]

図 3 は数値実験値と式（16）の近似式（点線）の比較を示す。図 3 の1列めは最大変位 \(\rho_{\text{max}} \) と減衰比 \(\xi \) の関係を示す。2列めは近似式の誤差を示す。3列めは最大変位と加速係数 \(q \) の関係を両対数グラフで示す。図 3 より、式（16）の最大変位近似式は加速係数 \(q \) と減衰比 \(\xi \) の広い範囲で良い近似を示す。

ところで、山田、津村の最大変位近似式は

\[\rho_{\text{max}} = 3.78 \sqrt{q} e^{-a}, \ a = 1.16 \xi^{0.35} \]

\[10 < q < 100, \ 0 < \xi < 0.1 \quad (17) \]

と与えられている。この近似式導出方法の詳細は不明であるため、適用範囲内では比較的良い近似を示すが適用外への拡張、精度の改善は難しい。

今回導出した式（16）は適用範囲の広いことが特徴であり、近似精度も10%程度に収まっている。広範囲をカバーする近似式のニーズの一方で、より高精度のニーズもある。4・7節で述べるごとくこれは適用範囲を小さくするほど効果がある。結論、近似式を新しく導出するニーズは常に存在し、本研究は有効と言える。

次に最大変位が生じる回転速度すなわち危険速度近似式も式（16）と同様、同じ適用範囲で

\[P = 10^4, \]

\[B = (0.28 - 1.5 \xi + 0.19 \xi^2) \]

\[+ \log(q)(-0.22 - 0.24 \xi + 0.68 \xi^2) \]

\[+ \log(q)^2(0.05 + 0.08 \xi - 0.95 \xi^2) \quad (18) \]

図 4 はこの近似式と数値実験値との比較を示すもので、誤差はただかか3%程度である。

\(\text{(1) Damping Factor } \xi_{\text{max}} \)

\(\text{(2) } q \text{ and } \rho_{\text{max}} \)

図 3 式（16）の新最大変位近似式とその近似精度

図 4 式（18）危険速度近似式と数値実験値の比較
4. 最大動的負荷トルク評価値の高精度化

4-1 高精度評価値の導出方法 式(5)第2式の
駆動系の運動方程式式は
\[2\pi\dot{\theta} = 1.0 - R \cdot T_{oc} \]
(19)
\[R \cdot T_{oc} = 2\mu q \cdot R_0 \]
(20)
\[R_0 = (j/2)(\dot{\theta} e^{-j\theta} - \dot{\theta} e^{-j\theta}) \]
と書き換えられる。\(R \cdot T_{oc} \)は駆動トルクを1.0としたときの動的負荷トルク(比)であり、\(R_0 \)は動的負荷トルクに対応する変位である。\(R_0 \)が最大のとき\(R \cdot T_{oc} \)が最大となる。したがって数値実験により最大の\((R_{oc0})_{\max} \)値を収集し、\((R_{oc0})_{\max} \)の高精度近似式 \(\rho_{\max} \)を導出すれば、これによる\(2\pi\dot{\theta}q \)を掛けて\((R \cdot T_{oc})_{\max} \)の高精度評価値 \(K \)を得る。

\[K = \frac{2\mu q \cdot \rho_{\max}}{1} \]
(21)

\(K \)は系に生じる動的負荷トルクの最大値を駆動トルクで正規化した評価値であり、モータのゆとり \(B \)は
\[B = (1-K) \times 100 \% \]
(22)
と予測することができる。\(K > 1.0 \)では危険速度を通過できないことを示す。
なお、従来の評価値 \(K \)は
\[K = 2\pi q \cdot \rho_{\max} \]
(23)
\(\rho_{\max} \)は式(17)の山田・津村の理想駆動源最大変位近似式を用いている。この \(\rho_{\max} \)は \(\mu = 0 \)のときの無負荷時最大変位に相当し、有負荷時にもオーティ的に成り立つ
として繰り込んだ結果である。もう少し詳しく説明すると(20)の定常変位変数 \(R \)は
\[R = Re^{j\varphi} = \rho e^{j\varphi} \]
(24)
とえられる。これより \(R_0 \)は
\[R_0 = -\rho \sin\varphi \]
(25)
\(\rho \)は主軸数を示し、危険速度通過領域では非定常の場合も \(\rho \sin\varphi \)の値が1.0に近いと考えられるから、\(R_0 \max = \rho_{\max} \)と置ける(13)。有負荷時でも負荷の小さい場合は無負荷時 \(\rho_{\max} \)と大きな差が生じないが、危険速度通過限界ではかなりこの振幅が大きく異なる誤差の原因になる。

高精度評価値を導くに先立って、参考のため式(23)の従来評価値 \(K \)とその数値実験値 \((R \cdot T_{oc})_{\max} \)との関係を図5に示す。図5中の対角線が両者の一致を示す。対角線より離れるほど、\(K \)の精度が悪いことを示す。加速度数 \(q = 2 \sim 32 \)では対角線からのデータのばらつきは比較的小さく、評価値 \(K \)は実用レベルの精度と言える。\(q = 0.5, 0.64 \)の両端ではばらつきがかなり大きくなっている。\(\rho_{\max} \)として式(16)を使用しても同程度のばらつきとなるが、\(q = 0.5, 0.64 \)では多少改善される。

4-2 数値実験データの収集 数値実験の計算データは加速度数 \(q = 2 \), \(N = -1 \sim 8 \)の10点、減衰比 \(\xi = 0 \sim 0.2 \)の0.02間隔の11点とした。アンバランス定数 \(\mu \)に関しては計算の限界に明確に入されないため、\(\mu \)の代わりに式(23)の従来評価値 \(K \)で与え、\(\mu \)
は \(K \cdot g \cdot J \)を用いて次のとおり求める。

\[\mu = K/(2\pi q \cdot \rho_{\max}) \]
(26)
この場合、計算データ \(K \)の範囲は
\[0.0 \leq K \leq 1.0 \]
(27)
とした。ただし、\(K \approx 1.0 \)は近似的な危険速度通過の限界であり、正確な限界は数値実験値 \((R \cdot T_{oc})_{\max} \)が1.0を超えるときである。\((R \cdot T_{oc})_{\max} = 1.0 \)の限界精度をあけるため、計算データ \(K \)は最初に1.0までとし、限界を超えると \(K = -1.0 \)とし、きのうみ幅を小さくして、\((R \cdot T_{oc})_{\max} > 1.0 \)で計算し、計算を打ち切った。ただし、減衰の大きい場合、\(K \)が1.0を大きく超えても \((R \cdot T_{oc})_{\max} \)が1.0に達しない場合もあるので \(K \) = 1.0でも計算を打ち切った。

危険速度を通過したかどうかの判定も問題である。
3. パラメータの場合、1000〜2000ケースの数値解析が必要で、これを連続自動計算するためには各ケースごとの計算修正に万全を期する必要がある。計算修正は回転速度 \(f_0 \)と時間 \(t_{mid} \)の両方に行った。この \(f_0 \)は理想駆動源の危険速度 \(P \)式(18)の1.2倍とした。
動的負荷トルクの作用する \(\mu = 0 \)の系では共振を通

![図5 従来評価値KとR・Toc max数値実験値の関係](image_url)
普通の方法による回転機構速度変化通過時非定常最大値の定式化（第1報）

4-4 最大動的負荷トルクの新高精度評価値
1518個の \(R_{0\text{max}} \) 数値実験値より得た近似式は

\[
\rho_{0\text{max}} = 10^4 A \left(\sum_{i=1}^{10} \frac{X_i}{D(i)} \right)
\]

\(A = \left[(0.823 - 3.33 \xi^2 + 0.88 \xi^4) \alpha + (0.930 - 0.32 \xi^2 - 35.6 \xi^4) \right] \frac{1}{q}
\]

\(q = \log(q) \left(-0.031 + 1.36 \xi^2 + 6.82 \xi^4 \right) - \left(-0.502 + 1.98 \xi^2 + 1.69 \xi^4 \right) \alpha
\]

\(+ \left(-1.64 + 32.0 \xi^2 - 118 \xi^4 \right) \alpha^2 \)

図6は式(32)を式(31)に代入し、得られた新評価値
\(K \) と最大動的負荷トルク比数値実験値 \(R_{0\text{max}} \) の関係を示す。対角線は

\((R_{0\text{max}})_{\text{max}} = K \)

を示す。増衰比 \(\xi \)，加速係数 \(q \) が変化しても数値実験値の各点は対角線上上で曲線を示しており、図5の従来評価値に比べ、大幅に評価値 \(K \) の精度が向上し、適用範囲も大きいことがわかる。

4-5 任意動的負荷トルクが作用する場合の最大変位近似式

加速係数 \(q = 0.5 \sim 128 \)，減衰比 \(\xi = 0 \sim 0.14 \)，評価値 \(K = 0 \sim 1.0 \) の計算データで計算した1012個の最大変位 \(R_{\text{max}} \) の近似式

\[
\rho_{\text{max}} = 10^4 \left((0.639 - 1.30 \xi^2 + 0.036 \xi^4) + (0.464 - 4.81 \xi^2 + 14.2 \xi^4) \right) \alpha
\]

\(+ (0.472 - 2.55 \xi^2 + 1.19 \xi^4) \alpha \)

\(+ (0.657 - 10.6 \xi^2 + 46.5 \xi^4) \alpha \)

\(+ (0.003 - 2.38 \xi^2 + 15.6 \xi^4) \)

図7は任意動的負荷トルクの作用する系での最大変位近似式(34)とその数値実験値の比較を示す。
普通的方法による回転機危険速度通過時非定常最大値の定式化（第1報）

図 8 無減衰時の危険速度通過の限界条件

\[\zeta = 0.0 \]

式 (34) はこの近似式（点線）と数値実験値 \(R_{max} \) の比較を示す。横軸は \(a = 2\mu q \) をとり、4 種類の加速係数 \(q \) について図示した。減衰比は \(\zeta = 0.0, 0.04, 0.12 \) の場合を併記した。

この近似式は図 7 より同じような実験について示され、すなわち、式 (30) で \(j \) の値は 2 までとし、\(j = 3 \) の \(a^2 \) の係数がすべて零になる選択肢を与えて導かれている。図 7 より式 (34) は良い近似式と言える。

4-6 無負荷、無減衰時の最大変位近似式の考察

式 (34) で \(a = 0, \zeta = 0 \) とすると

\[(\rho_{max})_{\infty} = 10 * (0.639 + 0.472 \log q + 0.003(\log q)^2) \]

\[\approx 4.36q^{4.72}(q = 0.5 - 2.56) \] とする。

これは無減衰理想駆動源の最大変位近似式である。この近似精度は \(5\% \) 程度になる。\(a = 0, \zeta = 0 \) のときの最大変位値実験値 \(R_{max} \) のみを使用し、その近似式を

\[(\rho_{max})_{\infty} = cq^2 \] とする。

この形で最小二乗近似すると \((\rho_{max})_{\infty} = \)

\[2^{1/2} \leq q \leq 2^{2/3} : 4.71 q^{8.44} \] （誤差 -9.4 ~ -6.6%）

\[2^{2/3} \leq q \leq 2^{3/4} : 4.42 q^{11.0} \] （誤差 -4.4 ~ -3.3%）

\[2^{3/4} \leq q \leq 2^{4/5} : 4.06 q^{13.4} \] （誤差 -1.3 ~ -2.9%）

とする。（37）

式 (17) 山田・津村の近似式で \(\zeta = 0 \) とすると

\[(\rho_{max})_{\infty} = 3.78q^{4.3} \] とする。

従来方法では \(q \) のべき乗標が 0.5 となっている場合がほとんどであるが、物理的に 0.5 の必要性は明確ではない。式 (38) は \(q \leq 2^3 \) で急激に精度は劣化する。なお、加速係数 \(q \) は式 (4) より

\[q = h f_2 = T_e / \left(2\pi f_2 (I_1 + m e^2) \right) \] とする。

\[\rho_{max} = \frac{a}{2\mu} \] と与えられ、\(a \) が小さいほど危険速度通過の加速度 \(h \)

が大きく、選択した \(q<10 \) の例は機械関連物 \(q > 10 \) の例は原子炉再循環 PLR ボンプの健全性評価で筆者は経験している。

4-7 無減衰時の限界トルク

無減衰 \(\zeta = 0 \) 時の最大動的負荷トルク変位 \((R_{max}) \) の数値実験値のみを集めたし、加速係数 \(q \)、アンバランス定数 \(a = 2\mu q \) との高精度近似式を次のときと合計して

\[(\rho_{max})_{\infty} = 10, \quad Y = (0.438 - 0.242a + 3.59a^2) \]

\[+ (\log q)(0.546 + 0.504a + 4.14a^2) \]

\[+ (\log q)^2(-0.011 + 1.35a - 1.25a^2) \] とする。

この結果は式 (32) の同減衰時で \(\zeta = 0 \) としたときとは多少異なるが、\(\zeta = 0 \) では式 (40) のほうが多少精度

式 (40) を使って最大動的負荷トルク評価値 \((K)_{\infty} \)

\[(K)_{\infty} = a \cdot \rho_{max}, \quad a = 2\mu q \] とする。

となるが、ここで \((K)_{\infty} = 1.0 \) として危険速度通過の

限界条件を図示すると図 8 になる。限界条件での \(a \) と \(q \)

は両対数グラフ上で直線となり、

\[a = 2\mu q = 0.269q^{0.504} \]

\[\mu q^{1.328} = 0.043 \] とする。

\[(K)_{\infty} = 2\mu q \cdot (3.78\sqrt{q}) = 1.0 \]

\[\mu q^{1.3} = 0.042 \] とする。

と一致する。限界トルク評価には式 (38) を使えることを示している。

5. 結 言

回転機が危険速度を通過するときに生じる最大変位や最大動的負荷トルクなどを非定常最大値を計算機によりシステムを定式化するための手法を検討した。この手法は数値実験により得られる大観の非定常データ群に多変量多項式の近似形式を適用し、最小

二乗法により最適化近似を行うものである。

解析対象とした不均一需求基本モデル系の無次元元 3 定数である加速係数 \(q \)、減衰率 \(\zeta \)、アンバランス定数 \(\mu \) について検討し、近似式の数をできるだけ

低く、簡単になるよう工夫した。これは曲線近似を対

数座標上で行うもので、最大変位、最大動的負荷トルク、危険速度の高精度、適用範囲の広い実用近似式を導き、本手法の有効性を示した。

文 献

普通的方法による回転機械の速度通過時非定常最大値の定式化（第１節）

(6) 山田・津村, 輯誌, 17-64 (1951), 115.
(7) 平野・松倉・木倉, 三菱電機技報, 42-11 (1968).
(8) 矢野・田村, 機論, 38-307 (1972).
(9) 岩置・黒橋・川井・篠川, Memo. Faculty Eng., Kobe University No. 25 (1980).

(12) 松浦, 機論, 42-363 (1975), 777.
(13) 松浦, 機論, 45-397, C (1979), 993.
(14) 松浦, 機論, 48-433, C (1982), 1360.