Vibration and Buckling Analysis of Axisymmetric Shells
with Locally Changed Thickness

Masaaki TAKAYANAGI

Free vibration and buckling of axisymmetric shells, with thickness which are changed locally, are analyzed. The displacement functions of these shells are expanded using the free vibration modes of the axisymmetric shells with constant thickness around the circumference. These basis vectors for expansion are calculated using a conical shell finite-element. The expanded functions are used to express the strain energy and kinetic energy. The eigenvalue equations are derived by substituting the strain energy and kinetic energy into Lagrange's equations. Analytical results using the present method show good agreement with analytical results obtained by other methods or experimental results.

Key Words: Vibration, Buckling, Axisymmetric Shell, Cutout, Reinforcement, FEM, Strain Energy, Kinetic Energy
部分的に板厚が変化する軸対称シェルの振動・変位解析

\[\delta = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \sum_{j} \begin{bmatrix} q_{ij} u_j \cos n_1 \theta - q_{ij} v_j \sin n_1 \theta \\ q_{ij} v_j \sin n_1 \theta + q_{ij} u_j \cos n_1 \theta \\ q_{ij} u_j \cos n_2 \theta - q_{ij} w_j \sin n_2 \theta \end{bmatrix} \]

ここに \(u_j, v_j, w_j \) は理想状態のシェルの振動モードで、\(q_{ij} \) \(q_{ij} \) はそれぞれの重ね合わせ係数、\(n_1 \) は周方向の波数である。\(u, v, w \) は全体座標系における変位成分であり、それぞれ、周方向、径方向、軸方向に対応している。

また、式 (1) に対応してひずみ分布も次式のように表す。ひずみ成分の表記は Zienkiewicz に従う。

\[\epsilon = \begin{bmatrix} \epsilon_{rr} \\ \epsilon_{r\theta} \\ \epsilon_{\theta \theta} \\ \epsilon_{\theta \theta} \\ \epsilon_{\phi \phi} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} q_{ij} u_j \cos n_1 \theta - q_{ij} v_j \sin n_1 \theta \\ q_{ij} v_j \sin n_1 \theta + q_{ij} u_j \cos n_1 \theta \\ q_{ij} v_j \sin n_2 \theta + q_{ij} w_j \cos n_2 \theta \\ q_{ij} u_j \cos n_2 \theta - q_{ij} w_j \sin n_2 \theta \end{bmatrix} \]

ここに \(\epsilon_{ij}, \epsilon_{ii}, \epsilon_{ij}, \epsilon_{ii}, \epsilon_{ij}, \epsilon_{ii}, \epsilon_{ij}, \epsilon_{ii} \) は理想状態の振動モードに対するひずみである。

2-2 振動解析: リングシェル要素の板厚が図 1 のように部分的に変化する場合、要素のひずみエネルギーは次式のように表せる。添字 \(\alpha \) は要素分であることを示す。板厚変化による補正分を示す(以下同じ)。

モードに対応するひずみである。

図 1 板厚変化

式 (1) (4) は式 (2) (5) を代入すれば要素のひずみエネルギーと運動エネルギーが求まるが、式 (3) (4) の第 1 項に関しては、答全体について次式から容易に求まる。

\[U_0 = \frac{1}{2} k_1^* (q_1^2 + q_2^2) \]

\[T_0 = \frac{1}{2} m_1^* (q_1^2 + \dot{q}_1^2) \]

ここに \(k_1^* \) \(m_1^* \) は理想状態の \(j \) 次の振動モードに対応する一般化剛性と一般化質量である。補正分について求めるため式 (2) を次のように表す。

\[\epsilon = \sum_{j} (\epsilon_{ij} + \epsilon_{ii}) \]

ひずみエネルギーの補正分は次のようにになる。

\[AU_0 = \sum_{j} \sum_{i} \int_{\theta_1}^{\theta_2} \int_{\theta_3}^{\theta_4} (\epsilon_{ij} + \epsilon_{ii}) D(\Delta H)(\epsilon_{ij} + \epsilon_{ii}) r d\theta d\phi \]

\[AT_0 = \sum_{j} \sum_{i} \int_{\theta_1}^{\theta_2} \int_{\theta_3}^{\theta_4} (K_1(q_{1i}q_{2i} + K_2 q_{1i}q_{2i} + K_3 q_{1i}q_{2i} + K_4 q_{2i}q_{2i}) r d\theta d\phi \]

運動エネルギーの補正分は式 (1) および式 (4) の第 2 項より、

\[AU_0 = \sum_{j} \sum_{i} \int_{\theta_1}^{\theta_2} \int_{\theta_3}^{\theta_4} (\epsilon_{ij} + \epsilon_{ii}) D(\Delta H)(\epsilon_{ij} + \epsilon_{ii}) r d\theta d\phi \]

\[AP_T = \sum_{j} \sum_{i} \int_{\theta_1}^{\theta_2} \int_{\theta_3}^{\theta_4} (K_1(q_{1i}q_{2i} + K_2 q_{1i}q_{2i} + K_3 q_{1i}q_{2i} + K_4 q_{2i}q_{2i}) r d\theta d\phi \]
式(8)，(9)の積分は Gauss の数値積分法（4 × 4 点）を用いて行う。また、板厚の変化する部分が複数箇所ある時はそれそれぞれについて AT, AU を評価する。
系全体のひずみエネルギー、運動エネルギーは各要素の総和として求められる。
\[U = \sum U_e \] \[T = \sum T_e \]
これをラグランジェの式へ代入する。
\[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}} \right) + \frac{\partial U}{\partial q} = 0 \]
q_iに関しても同様の操作を行い、次の固有値方程式を得る。
\[M^* \ddot{q} + K^* q = 0 \]
式(13)の固有ベクトルを求め、式(1)のq_i, q_jへ代入すれば固有振動モードが求まる。

2.3 座屈解析 静的荷重による変形およびひずみを式(1), (2)で仮定し、次の連立方程式を解いて、板厚変化も考慮して座屈前の膜応力分布を求めめる。
\[K^* q = F^* \]
ここに F^*は一般化力であり、フーリエ展開した荷重に理想状態のシェルの振動モードを乗ることにより得られる。式(14)の解と式(2)の $\varepsilon_t, \varepsilon_t, \gamma_t$に対応する膜応力 N_{t}, N_{t}, N_{t}を用いて、要素内の膜応力は次のように表せる。
\[
\begin{bmatrix}
N_{t} \\
N_{t} \\
N_{t}
\end{bmatrix} = \sum \begin{bmatrix}
q_i \bar{N}_{t} \cos n, \theta - q_j \bar{N}_{t} \sin n, \theta \\
q_j \bar{N}_{t} \cos n, \theta - q_j \bar{N}_{t} \sin n, \theta \\
q_j \bar{N}_{t} \sin n, \theta + q_j \bar{N}_{t} \cos n, \theta
\end{bmatrix}
\]
面外変形による付加的な非線形内ひずみとこの膜応力により生ずる要素内のひずみエネルギーは次のように表せる。
\[
U_{ext} = \int_{0}^{\frac{\pi}{4}} \int_{0}^{2\pi} \frac{1}{2} \begin{bmatrix} \phi_t \\ N_t \\ N_t \end{bmatrix} \begin{bmatrix} N_{t} & N_{t} & N_{t} \\ N_{t} & N_{t} & N_{t} \\ N_{t} & N_{t} & N_{t} \end{bmatrix} \begin{bmatrix} \phi_t \\ \phi_t \\ \phi_t \end{bmatrix} \sin \theta d\theta d\phi
+ \sum \int_{0}^{\frac{\pi}{4}} \int_{0}^{2\pi} \frac{1}{2} \begin{bmatrix} \phi_t \\ N_t \\ N_t \end{bmatrix} \begin{bmatrix} N_{t} & N_{t} & N_{t} \\ N_{t} & N_{t} & N_{t} \\ N_{t} & N_{t} & N_{t} \end{bmatrix} \begin{bmatrix} \phi_t \\ \phi_t \\ \phi_t \end{bmatrix} \sin \theta d\theta d\phi
\]
ここで、第2項のkは板厚変形の係数である。また、
\[
\begin{bmatrix} \phi_t \\ \phi_t \\ \psi_{t} \end{bmatrix} = \begin{bmatrix} \partial u/\partial s \\ \partial v/\partial \theta - n_s \cos \phi \\ \psi_{t} \end{bmatrix}
\]
\[
= \sum \begin{bmatrix} q_i \bar{v}_{t} \cos n, \theta - q_j \bar{v}_{t} \sin n, \theta \\
q_j \bar{v}_{t} \sin n, \theta + q_j \bar{v}_{t} \cos n, \theta \end{bmatrix}
\]
であり、\bar{v}_{t}, \bar{w}_{t}は理想状態のシェルの振動モード
対するものである。u, v は要素座標系における法線方向および周方向変位である。q は変形シェル要素の傾きである。式(15)，(17)を式(16)へ代入し、第 2 項の積分を Gauss の数値積分法により求める。式(16)は次のように書ける。

$$U_{ntr} = \frac{1}{2} \left[q_1 r^{2} K^{*}_{c11} K^{*}_{c22} \right] q_1 = \frac{1}{2} r^{2} K^{*}_{n} q$$

(18)

系全体の非線形ひずみエネルギーは全要素について総和をとることにより求められる。

$$U_{nt} = \sum U_{ntr}$$

(19)

座屈時の非線形ひずみエネルギーを λU_{nt} とし、全ひずみエネルギーを最小とする q_1, q_2 を決定する。

$$\partial (U + \lambda U_{nt})/\partial q_1 = 0$$

(20)

$$\partial (U + \lambda U_{nt})/\partial q_2 = 0$$

(21)

ここに、線形のひずみエネルギー U は振動解析のために用いられたものと同一である。

以上より、次の固有値方程式が得られる。

$$[K^{*} + \lambda K^{*}_{c}] q = 0$$

(22)

一定荷重が加わっている場合、上述の手順で非線形ひずみエネルギーを評価し、式(20)，(21)を代入すると次式が得られる。

$$[[K^{*} + K^{*}_{c} M] + \lambda K_{c}] q = 0$$

(23)

K^{*}_{c} が一定荷重の影響を表す。なお、一定荷重の振動解析も K^{*}_{c} により影響を受ける、前節の振動解析の解を式(1)へ代入すれば座屈モードを求めることができる。

図 5 円形板厚変化部を有する周辺固定円板の振動モード

ノンパラブリック・シェル要素を用いた解析プログラムを作成して用いる。本法について解析モデルを図 2 に示す。黒丸印は変形シェル要素の節点である。板厚変化部は周方向に 4 分割し、それぞれの領域に 4 × 4 点の Gauss の数値積分法により積分する。図 3 はノンパラブリック要素による分割である。なお、要素分割を容易にするため、両者とも中心部に半径 0.025 の穴を設けている。

図 6 斜円筒かく

図 7 く形開口円筒かく

3. 解 析 例

3.1 板厚変化部のある周辺固定円板の自由振動

図 2 に示すような直径 2a。板厚 H の周辺固定円板の中心から a/2 偏心した位置に直径 a/2。板厚 H_1 の円形の板厚変化部が存在する系について、板厚の比 H_1/H を変えた固有振動数と振動モードを解析する。

解析には本法のほかに、曲面のアイソパラブリック・シェル要素を用いた解析プログラムを作成して用いる。本法による解析モデルを図 2 に示す。黒丸印は変形シェル要素の節点である。板厚変化部は周方向に 4 分割し、それぞれの領域に 4 × 4 点の Gauss の数値積分法により積分する。図 3 はノンパラブリック要素による分割である。なお、要素分割を容易にするため、両者とも中心部に半径 0.025 の穴を設けている。
部分的に板厚が変する円筒シェルの振動・固有解析

H_i/H を 0 から 3 まで変化させた時の固有振動数を図 4 に示す。図中の n は周方向の波数、λ_n は無次元振動数（$\omega / \sqrt{D'/(\rho H a^2)}$）、$D_i = EH/(12(1-\nu))$ である。図 5 に $n=1$ と 3 の振動モードを示す。上半分は径方向の変化、下半分は周方向の変化を示す。両方の手法による λ_n はほぼ一致しているが、H_i/H が大きくなるにつれて誤差が大きくなる傾向を示している。これは本法において理想状態のシェルモードとして $n=0$ ～ 19 について各 10 次モードまで考慮し、収束を確認しているにもかかわらず、図 5 に示すように、$H_i/H=3$ で振動モードに差が生じているためと考えられる。

3-2 斜円筒の自由振動

入江、山田、村元らは図 6 に示す斜円筒を変で変数変換により直円筒に変換し、リッツ法を用いて自由振動を解析している[1]。本法を用いて $\theta = 30^\circ$, 50° の場合を解析し、両者による結果を比較する。本法では、$a + \alpha \tan \theta$ の直円筒を振動モードを用いて斜円筒の振動モードを近似する。$\theta = 30^\circ$ の場合は $n=0$ ～ 19、軸方向のモードの数 $m=10$、斜め方向のモードの数 $m=10$、付加の要素を 44 個の領域に分割して行う。$\theta = 50^\circ$ の場合はそれぞれ $n=0$ ～ 19、$m=10$, $\alpha = 0.88$ 分割とする。無次元振動数 $\lambda_n = \omega / \sqrt{D'/(\rho H a^2)}$ で表 1 に示す。両方の手法による結果は良く一致しているが、$\theta = 50^\circ$ のほうがやや差が大きくなっている。これは直円筒とその形状の違いが大きいこと、および n が 1 だけ少ないことに由来するものと考えられる。

3-3 く形開口を有する円筒の固有振動数

図 7 の $L=152.4$ mm、$a=155.6$ mm、$H=0.66$ mm のアルミニウム円筒に関して、開口の大きさを変えて（$b = 15.2$ mm で一定）、$\phi = 0$ ～ 120° まで 30°間隔に変化させ実験と解析が行われた[2]。本法を用いて、$n=0$ ～ 17、$m=8$、開口部は幅方向 4 分割、周方向 6 分割の条件で解析する。また、試験体の両端には鉛の重が付加されており、境界条件は単純支持とする[3]。本法による解析結果と実験値[4]を図 8 に示す。解析値のほうがやや高めの結果となっているが、開口が大きくならむにつれて、固有振動数がわずかに低下する傾向を、実験結果と対応している。

3-4 開口を有する円筒の座屈荷重

図 7 の $L=228.6$ mm、$a=155.6$ mm の円筒の長さ方向の中央の接合位置に、2 箇所のく形の開口を有する系に、軸圧縮荷重を加えた時の座屈に関する実験ならびに解析が行われた[5]。円筒の両端にはそれぞれ長さ 38.1 mm、

<table>
<thead>
<tr>
<th>テーブル 1 く形開口円筒の固有振動数（$\lambda_1 \times 10^3$）</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

$P_{cr}=0.6(1.5H/a^2)$ 2naH

図 8 く形開口円筒の固有振動数

図 9 く形開口円筒の座屈モード（解析）
厚さ10.92 mmの厚肉部があり、下端を試験機に固定し、上から圧縮荷重を加えている。開口部は\(b=76.2 \) mmで一定とし、\(\phi \)と\(H \)を変えて実験が行われた。

解析モデルには厚肉部も含め、下端固定、上端自由の境界条件とした。\(\phi=45^\circ \)の場合は\(n_r=0 \sim 37, \ m=8 \)とし、開口部は軸方向に6分割、周方向には4分割して積分した。\(\phi=30^\circ \)の場合は\(n_r=0 \sim 42, \ m=13 \)、開口部は軸方向に6分割、周方向は4分割とした。座屈荷重の解析結果を表2に示す。

微小変形理論に基づいた結果であるにもかかわらず、軸圧縮荷重試験としては実験値とかなり良く合っていると言える、開口部を考慮しない理論値\(P_d \)と比較すると、開口部の影響により50％前後座屈荷重が低下していることもわかる。図9に座屈モードを示す。

4. 結 言

本研究の内容をまとめると以下のようになる。

（1）リングシェル要素を用いて理想状態の軸対称シェルの振動モードを求め、それらを用いて部分的な板厚変化部がある場合の振動モードを級数近似し、運動エネルギーとびずみエネルギーを評価して振動解析を行う手法を提案した。

（2）（1）と同様の振動モードを用いて、部分的な板厚変化部を有する軸対称シェルの座屈モードを近似し、座屈荷重を求める手法を提案した。

（3）部分的な板厚変化部を有する円板、斜円板か、開口を有する円筒か等について、本報で提案した振動解析手法を用いて自由振動を解析し、他の解析手法による結果あるいは実験値と比較し、良く一致することを確認し、本法の妥当性を示すことができた。

（4）く形の開口を有する円筒かの軸圧縮荷重による座屈を解析し、工学的にほぼ満足できる結果が得られ本法の妥当性を確認した。なお、本法は軸圧縮だけでなく、任意の荷重に対して適用可能である。

最後に、本研究に対し、東京大学柴田教授より有益なご指導をいただいたことを記し、感謝の意を表す。

付 録

\[
D(H) = \frac{E(H+\Delta H)}{1-\nu^2} \left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\nu & 1 & 0 & 0 \\
0 & 0 & (1-\nu)/2 & 0 \\
0 & 0 & 0 & (1-\nu)(H+\Delta H)^2/24 \\
\end{array} \right]
\]

\[
D(H) = D(H)+\frac{\Delta H^2}{H} \left[\begin{array}{cccc}
C & 0 & 0 & 0 \\
0 & C & 0 & 0 \\
0 & 0 & C' & 0 \\
0 & 0 & 0 & C' \\
\end{array} \right] = D(H)+D'(\Delta H)
\]

\[
C = \frac{E(H+\Delta H)^2}{12} \\
C' = \frac{(1-\nu)(2H\cdot E(H+\Delta H)^2)}{24}
\]
附属に板厚が変化する弾性セリの振動・空洞解析

文 献

(6) 同本・関谷, 任意形状の断面取付けられた平板の強制振動 (第 2 報, 基礎理論の検証及び応用計算例), 機論, 41-342 (1975), 432.
(7) 入江・山田・村元, 斜面内板の自由振動, 機論, 51-467, C (1985), 1704.
(8) Tennyson, R. C., The Effects of Unreinforced Circular

討 論

[質問] 長屋 幸助 [群馬大学工学部]
複雑な問題を取扱われ、手際良くまとめられることに敬意を表す。
（1）貴重な解析はもとより有限要素法（FEM）と同じく、場を離散化する思想であらわされており、不連続部分も離散化（分割）して取扱う必要があると思われる。一方、FEM はプログラムを用いる場合も不連続部分の板厚、密度変化を分割部分でのデータとして導入でき、本質的に同じ分割数で解析・計算の場合も一般的な FEM の場合と分割上力の精度は同じと考えられる。また計算機性能、分割に要する手間も同じと思われる。しかし計算時間は一様な場合の数値値と固有ベクトルをあらかじめ求め、さらに不連続部の数値積分が必要とする振動のほうがはるかに大きく考えられる。貴重な結果はどのように場合に有利となるのか。
[回答] 本報の円板の例について計算時間を比較すると、図 4 で \(H_i / H = 0 \) のとき、本法では約 20 秒 (いずれも HITAC S 810 使用) と計算時間自身は小さいが、本法のほうが不利な結果が導かれた。しかし、以下に挙げる点において本法が有利となる。
（1） 本法では、図 2 に示すように、一様厚部分は一次元でモデル化しており、不連続部のみを分割（図 1 の \(\theta_n \sim \theta_n H_n \) のみ）すればよい。したがって FEM に比較して分割の手間は大幅に小さい。
また、今回は周方向の積分点数を 1 分割当たり 4 としているが、このような計算時間は一様な場合の数値値と固有ベクトルをあらかじめ求め、さらに不連続部の数値積分が必要とする振動のほうがはるかに大きく考えられる。貴重な結果はどのように場合に有利となるのか。
（2） 不連続部分のないときの固有振動数、振動モードも同時に求まる。