経験的予測のモデル化と歯車の振動推定に対する適用*
久保愛三*, 赤堀広文**, 坂本勇***

A Model for Empirical Estimation and its Application to the Prediction of Vibrational Level of Gears

Aizoh KUBO, Hirofumi AKAHORI and Isamu SAKAMOTO

A hypothesis is assumed in that the empirical estimation reached by mechanical engineers in designing, trouble shooting and so on is worked out not by "rules" stored in the knowledge base which is deduced from their experiences, but by simple inter- or extrapolation of data concerning the objective matter in the memory of their experience, which are not conceptualized in the form of "rules". In this report a model for this is proposed. The procedure of prediction according to this model is as follows: 1. Specification of factors which influence the objective matter, and classification of Concepts of nonnumeric factors among them in a tree structure. 2. Construction of the data base according to this conception structure. 3. Investigation of the degree of resemblance in objective matter between the investigating example and each example in the data base. 4. Decision of the estimating value by enveloping extrapolation of distributing points on the "objective matter vs degree of resemblance" chart. Predictions of gear vibration according to this model have proved that the accuracy of the estimation is quite good. When this model is incorporated in an expert system, it is no longer necessary for knowledge engineers to form "rules" by consulting experts. The job of knowledge engineers is to construct the attributes of the data base, that is, to construct the tree structure of the conception of factors which influence the objective matter.

Key Words: Expert System, Empirical Prediction, Gear, Vibration, Database, Knowledge Engineer

1. 緒 言

歯車装置の設計を例に取るとき、まず設計者が考える
ことは、同じ用途で、使用条件、運転条件の似た歯車
装置には、過去にどうなるものがあったか、その構
造、使用されている歯車の諸元、精度、材料はどうであっ
たか、その歯車に損傷が起こったら、振動騒音はい
かであったか、そして結果として、その歯車装置の
評価はどうであったか、設計者として反省すべきこと
はなかったか、といったことであり、前例を参照する
ことなしに設計を行うことは、およそ不可能である。
一般に、豊かな経験のある優秀な技術者は、自分の経験
した過去の事例を整然と整理、分析し、その分析結果
に問題点の抽出結果も付け加えて記憶している。新	
たな歯車装置を設計製作する場合やトラブルシューティ
ングの場合には、これらの前例の検索が行われて、創	
作や判断がなされる。

過去の経験の参照が、自動的に行えるようにすることは、
一般には非常に難しいことであるが、エキスパ
ートシステムと呼ばれるもの、その実現を目指して
いるものである。エキスパートシステムの構造は代	
表的に、図1のように表すことができる。エキスパート	
システムが有効に動くためには、エキスパートの	
知識をルール化したものの集合である知識ベースの内	
容が十分に保存されている、これが知識ベース管理システム	
により、最適に用いられなければならない。したがって、こ	
れらの知識ベースの構築と管理の仕事、特にエキスパ	
ートから必要な知識を獲得し、それらをルール化する仕事	
を行う人間、いわゆる、知識技術者(knowledge engi-
neer)の仕事の成果が、エキスパートシステムの能力
tを決定してしまう。しかしながら、知識ベースならびにその管理システムの構築は、エキスパートが従来	
として持っている知識のどの部分をどのようにルール化	
すべきであるのか、また、どのような知識を決定して行わ	
れ、知識技術者が、知識を供給しようとするエキスパ	
ートと同等かそれ以上の知識をその分野において持っ	
ていなければ、ほとんど不可能であるほど、一般に困	
難な仕事である。

経験的知識を、ルール化することは一般に極めて難	
しい、この困難さを考えると、経験ある人間が、たた	
て本当に自分の知識をルール化し、それを参照して、物事を推論したり判断したりしているのだろうかと
経験的予測のモデル化と歯車の振動推定に関する適用

2. 階層的解釈と経験的予測のモデル化

2.1 歯車技術者の歯車装置振動騒音に関する経験的知識の理解法

例として，動力伝達用歯車装置の運転中の振動騒音を予測するため，歯車装置の設計を考慮する場合，歯車技術者は，どのような用途の歯車装置で機種はなあ有意義，騒音度，伝達力，歯車の数，精度はどうであったか，騒音の影響を考慮するため，基本の数値等から考え，次に，歯車の基本諸元等から導かれる，かみあい率やか

図1 エキスパートシステムの一般的構造と知識技術

表1 諸元・条件データベースの最上階層の項目例

<table>
<thead>
<tr>
<th>No</th>
<th>Factor</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data number</td>
<td>Character</td>
</tr>
<tr>
<td>2</td>
<td>Field of application</td>
<td>Character</td>
</tr>
<tr>
<td>3</td>
<td>Tooth mesh frequency</td>
<td>Numeric</td>
</tr>
<tr>
<td>4</td>
<td>Transmitting load</td>
<td>Numeric</td>
</tr>
<tr>
<td>5</td>
<td>Loading condition</td>
<td>Character</td>
</tr>
<tr>
<td>6</td>
<td>Contact ratio</td>
<td>Numeric</td>
</tr>
<tr>
<td>7</td>
<td>Gear accuracy</td>
<td>Numeric</td>
</tr>
<tr>
<td>8</td>
<td>Tooth flank roughness</td>
<td>Numeric</td>
</tr>
<tr>
<td>9</td>
<td>Gear box construction</td>
<td>Character</td>
</tr>
<tr>
<td>10</td>
<td>[Mesh free.]/[Natural freq.]</td>
<td>Numeric</td>
</tr>
</tbody>
</table>
の第1項目は自動車用のほかに，産業機械用，建設機械用，鉄道用，航空機用など種々のものが考えられ，
その各々の下に，どの会社の何型といった情報がその
型の数だけ存在し，その名々の下にその機械のどの
部分で機能する歯車装置であるかが指定される。
この例からもわかるように，ある概念を与える文字
型のデータは，その内容を階層的に分類することが可
能である，階層化できないため，ある程度以上
深く階層化できないものは，そこを階層のいちばん
底だとはみせよう，歯車装置の振動騒音に関係する
諸条件を特定するための階層化概念ができ，過去
の事例がその概念構造によって分類整理されてデータ
ベースを作ることができる。
図2は，本研究で提案するモデルを実際に構築し，
その挙動を検討するために採用した階層概念の一例を
示している，最上位の階層として表1の内容をとり，
文字型データについてはその下に類似した深さの下位階
層を設けている，実際に本論文で提案する経験的予測
のモデルを動かすには，この階層概念に従った構造と
属性を持つデータベースが必要である，したがってこ
こでは，現実に集められるデータの数と内容を考慮し，
またモデルを記述する言語仕様の能力を考慮し
て，例えば「用途機械」の項目の下の「どの会社の」
と「何型」を示す階層を削除するなど適切な簡略化を
施している。

2-3 類似度 データベース中にある過去のデータ
と検討対象にしているデータがどの程度類似して
いるかを判定することはあまり容易ではないが，ここで
は以下のような手法を提案する。
数値データは直接その値を比較することが可能であ
る，そこで

\[D = \frac{[過去の設計例の値]}{[検討例の値]} \]

の関数として，類似性ポイント \(P_a \) なるものを考える，
\(P_a = 0 \) とはどのデータも全く異なることを意味し，
\(P_a = 1 \) とは同一であることを意味するとする，すると
この関数は \(D = 0 \) で \(P_a = 0, D = 1 \) で \(P_a = 1, D \to \infty \) で
\(P_a \to 0 \) なる挙動を示すことは明らかである，この関数
をここでは図3の破線のように近似する，数値データ
は階層を持たないので，すべて式(1)と図3により単
純に類似性ポイントを決定することができる。

文字型データは階層化された概念として保存されて
いる，そこで，各階層ごとにその概念内容に番号付け
をすると，階層化された概念の各階層，各階層ごとの
概念内容の番号を階層の深さ方向(Down top)に書き
並べて得られるコードにより特定することができる，
例えば図4を参照して，自動車用ファイナルデフは
0102 なるコードで表されることになる，このコードは
階層の深さ方向に各階層の概念内容を書き並べて得ら

—216—
論文の内容があるため、二つの文字型データのコードが
完全に同じならば、両者の示す概念は完全に一致し
コードがはじめから途中まで一致すれば両者の示す概
念はコードの一意の程度に応じただけ似ており、コー
ドが最初から異なれば両者の示す概念は全く違うこと
になる。このことより、文字型データについての類似
性ポイント \(P_a \) を次のように決める。すなわち、コードが
すべて同じなら： \(P_a = 1 \)
途中まで同じなら： \(0 < P_a < 1 \)
（一致コードの階層に応じた値）
最初から異なるなら： \(P_a = 0 \)

これを定義に、いま検討しようとしている事例と
データベース中の各事例との間に、表１に示した各々
の項目ごとに、両者間の類似性ポイント \(P_a \) を決定で
きる。
いま検討しようとしている事例とデータベース中の
各事例との間の類似度 \(P \) は、これらを総合すること
により

\[
P = \sum K_a P_a \quad N \text{：対象項目数} \quad \ldots (3)
\]

で求められる。ここに \(K_a \) は重みの係数である。これ
は、表１に示した各々の項目の歯車装置振動騒音に及
ぼす影響程度が一様でないため、その影響程度に応じ
て、表１に示した各々の項目に対する類似性ポイント
\(P_a \) に重みをつけるものである。この重みの値は、エキ
スパートが経験的に与えなければならないものであ
り、厳密には \(K_a \) 体自体が図 2 で示されるような階層の
内容すべての関数になると、ここでは問題を容易にする
ため、重みは固定であるとした。

2.4 推論法 まず、このシステムを動かすために
は過去の歯車装置に関するデータベースが存在しなく
てはならない。このデータベースは、表 1、図 2 に示し
た構造の、事例を特定するための諸元・条件データベー
スと、表 2 の属性を持つ、振動騒音の測定や推定結
果や実績を納めた対象項目データベースとから成り立
っている。

いま、ある新しい事例についての振動騒音を、ここ
に提案する方法で予測する場合を考える。図 5 はその
流れを示したものである。まず、検討しようとする歯
車装置に関するデータがこの階層概念に沿って分析さ
れて諸元・条件データベースに入力される。このデー
タベース中の過去の各事例のデータといま入力したデー
ータなどが比較され、過去に用いられた重み係数を参照
して指定することにより、類似度が計算される。次に、
過去の各々の事例ごとに、対象項目データベース中よ
り対象項目数（この場合は、振動の大きさの実績デー
タが引き出され、類似度の関数として一覧される。こ
の[現検討例と過去実例との類似度] vs. [実績データ]
の分布状態を補間あるいは補外して、今検討している
新しい歯車装置事例の振動騒音の大きさを推定する。

3. 経験的推論の実行例

3.1 検討方法 この経験的推論法のモデルを実
際的に動かすための必要なデータベースのために、ここで
は、実際に我国で用いられたあるは用いられている
歯車装置（インポリュート円筒歯の歯車装置のみ）の
データを 43 件収集した。データ中の歯車装置の用途

<table>
<thead>
<tr>
<th>No.</th>
<th>Factor</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data number</td>
<td>Character</td>
</tr>
<tr>
<td>2</td>
<td>Similarity grade</td>
<td>Numeric</td>
</tr>
<tr>
<td>3</td>
<td>Estimated value</td>
<td>Numeric</td>
</tr>
<tr>
<td>4</td>
<td>Allowable value</td>
<td>Numeric</td>
</tr>
<tr>
<td>5</td>
<td>Measured value</td>
<td>Numeric</td>
</tr>
<tr>
<td>6</td>
<td>Judgment</td>
<td>Logic</td>
</tr>
<tr>
<td>7</td>
<td>Existence of actual unit</td>
<td>Logic</td>
</tr>
<tr>
<td>8</td>
<td>Evaluation</td>
<td>Logic</td>
</tr>
<tr>
<td>9</td>
<td>Comment</td>
<td>Character</td>
</tr>
</tbody>
</table>

例 1: " Automobile"
は、自動車、産業機械、ターボ機械、建設機械、鉄道、
船舶、工作機械、電動工具、OA機器、歯車運転試験機
にわたっており、伝達効率は0.5 kW-30 000 kW、回
転数は280-11 000 rpm、モジュールは0.6-18 mm、圧
力角は14.5-27 deg、ねじれ角は0-34.5 deg、歯車精
度はJIS 0-JIS 5級の範囲である。

しかし、これらの事例の内で若干のものは振動騒音
の測定結果を持っておらず、また、測定結果のある場
合についても測定方法に統一性がなく、定量比較をす
る場合のデータとして問題があった。そこで、歯車装
置運転中の振動騒音の大きさの問題を中心に検討し、
ある条件の変化を検討しようとしている事例は、その
用途、精度、加工法に特徴的な形状であり、誤差振幅がJIS歯車精度規
格で示されている許容最大値であると仮定した。また、
ピッチ誤差の影響は無視した。また、統計的考察をす
る場合、これではデータ量が不足する際には、できる
だけ実験的に即したような歯車装置のグミーデータを作
成してシミュレーションを実行し、最大160件の内容
を持つデータベースとした。

3.2 経験的推論の実例　ある新しい事例を検討
する。データベース中のすべての過去のデータと
この事例との間の類似度を計算してこれを基準の値と
し、類似度と各々の過去のデータが持つ無次元化振動加
速度の変動性質で分類する。その結果、パラメータの
変動の領域が明らかになった。この事例の実例を、
類似度を基準に分類した結果を示す。

図5は過去実験との類似度の拡張による推論の流れ
である。データベース中にあるすべての過去のデータと
この事例との間の類似度を計算してこれを基準の値と
し、類似度と各々の過去のデータが持つ無次元化振動加
速度の変動性質で分類する。その結果、パラメータの
変動の領域が明らかになった。この事例の実例を、
類似度を基準に分類した結果を示す。

図5過去実験との類似度の拡張による推論の流れ
開始

-218-
的予測値の精度がどのように変わるかを示したものである。横軸にはデータ件数 (20, 40, 80, 160)、縦軸には過去のデータ (□ 印) の分布から今検討している事例の振動加速度実効値を予測した値 a_{est} と、歯車歯面方向向振動シミュレーションにより計算した結果 (●印) a_{sim} との比 $\frac{|a_{sim} - a_{est}|}{a_{sim}}$ をとっている。図にみられるようにデータ件数が 40 件程度を超えるとかなりよい精度で予測できることがわかる。また、図 6, 7 の結果より明らかのように、ここに提案している経験的予測法の基礎となるデータベースのデータとしては、必ずしも検討事例に似たデータを選んで集める必要はないが、ただ、嘘のないデータであることが必要である。内容に偏りのあるデータがデータベース中にあれば、図 6, 7 のような分布を乱すので、まともな推定ができなくなる。これは人間の思考や経験的予測や推定の場合と極めてよく似ている。

3.3 重み係数について 類似度を計算するときに必要な重みの値として、前節では表 3 の * の列の値を採用した。歯車箱構造についての重みを零としているのは、歯車歯面方向振動加速度の大きさのシミュレーション計算結果をもって、各々の歯車歯面の振動騒音の大きさを表す指標値としたために、歯車箱や設置状況を全く考慮できなかったためである。実測データを用いてこのシステムの経験的推定を行うときは、当然、歯車箱構造についての重みには、かなり大きい値を与えなければならないであろう。

重みの与え方を変えることにより、図 6, 7 に相当する過去データの類似度の分布ならびにそれによる推定結果がどのように変わるかを検討した結果の一例を図 9 から図 13 に示す。用いた重みは各々適当に与えたものであり、表 3 の A から E までに示されている。図 9, 10, 11 を比較してわかるように、重みの配分が変化することにより、過去のデータと今検討している事例の類似度の分布状態はかなり大幅に変化するが、分布が類似度 $P=1.0$ のところへ収束した傾向の値にほとんど変化が認められない。このことは、重みの値の配分はエキスパートが経験的に与えなければならないものであるが、その配分の詳細についてはそれほど

<table>
<thead>
<tr>
<th>表 3 重み係数 K_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field of application</td>
</tr>
<tr>
<td>Tooth mesh frequency</td>
</tr>
<tr>
<td>Transmittting load</td>
</tr>
<tr>
<td>Loading condition</td>
</tr>
<tr>
<td>Contact ratio</td>
</tr>
<tr>
<td>Gear accuracy</td>
</tr>
<tr>
<td>Tooth flank roughness</td>
</tr>
<tr>
<td>Gear box construction</td>
</tr>
<tr>
<td>(mesh free.)/(natural free.)</td>
</tr>
</tbody>
</table>
経験的予測のモデル化と微率の振動推定に対する適用

図 9 重み係数の変更による [類似度] vs. [実績データ] の分布状態の変化と、現検討例に対する推定値 [重み係数 K_s; 表 3 の A]

図 10 重み係数の変更による [類似度] vs. [実績データ] の分布状態の変化と、現検討例に対する推定値 [重み係数 K_s; 表 3 の B]

図 11 重み係数の変更による [類似度] vs. [実績データ] の分布状態の変化と、現検討例に対する推定値 [重み係数 K_s; 表 3 の C]

図 12 重み係数の変更による [類似度] vs. [実績データ] の分布状態の変化と、現検討例に対する推定値 [重み係数 K_s; 表 3 の D]

図 13 重み係数の変更による [類似度] vs. [実績データ] の分布状態の変化と、現検討例に対する推定値 [重み係数 K_s; 表 3 の E]

と神経質にならなくても良いことを示している。しかし、図 12、13 に示すように、あまりこれをいい加減にしすぎると、分布から類似度 $P = 1.0$ のところへ収束した縦軸の値を決定できないことになる。

4. 結言

経験ある人間がある物事について予測をしたりあるいは判断をしたしたりする場合には、ルール化された知識を参照するのではなく、自分が持っている過去の経験的知識の中から似ているものを選び出し、それを単純に補間するのではなく、それを近似して行っているとの仮定に立って、その過程を再現するモデルを提案した。このモデルとは、まず、

①検討しようとする対象に対する影響因子を特定し、
②その内非数値型因子の概念を階層化する。
③過去の事例をこの階層化概念により整理し、事例内
経験的予測のモデル化と歯車の振動推定に対する適用

【質問】矢田恒二（オムロン）
（1）図11が他のデータと同じような推定値をもつのばピックアップした項目の数が少なくても重みをつけたからだと思われるが、表3のCの2を1の重みにしたのではならないか。
（2）文字列データの類似度をコード番号の階層で定めるというのは面白いと思う。しかし階層の深さの程度はそれぞれを含んでいる深さの間の関係と逆並びで見ると、同じレベルにあるとは限らないと思う。このようなことを考察したときの類似度Pへの影響はどう考えられるか。
【回答】（1）重みのさせではなく、「かみあい周波数」、「伝達荷重」、「歯車精度」といったシミュレーションにおける歯車振動加速度の大きさを基に、サンプルデータを採用してみたが、結果は表3のAとD、Eの結果を比較していただいたが、差が現れない。
（2）ルートディレクトリに相当する概念が異なれば、重い重み係数が異なるため、同じ深さのサブディレクトリの概念が異なっても結果に影響を及ぼさない。同じルートディレクトリ間に属するサブディレクトリの概念が同じ深さで著しく異なれば、結果に影響を及ぼすので、概念の階層化は十分慎重に行わねばならない。
適切に行えば、少なくとも上位階層でのデータの抜けをほとんどなくすように構築できるのではないかと
も考え得る。

（質問）畑野宏正（呉工業高等専門学校）
歯車の振動予測に対する研究を興味深く拝見させて
いただきたく。

（1）図9～13に示された検討事例は図6か図7
の場合のいずれの事例について検討されたものか。

（2）過去のデータと検討事例に対する類似がない
図7においてP=1の位置の推定値を決定する場合、
図示されたプロット点の下方の漸近線のとり方により
推定値が若干変わる。このような場合、シミュレーション
計算を行わなければならずという不安が常に生
ずるが、この点はいかがか。

（3）（2）に関連するが、データ量の不足の場合、
現実に即した歯車装置のダミーデータよりデータベー
スを増やすのであれば、直接その事例についてシミュレ
ーション計算するほうが効率的でいか。

（回答）（1）すべてについて用いているデータ
ベースは同じであり、対象としている事例は、図6の
ものである。

（2）ユーザが、どの程度の推定精度を期待するか
により、そのようなことが必要になる場合もあると思
う。

（3）データベースが不十分であれば、根本的にこ
の方法は用いることができない。これは人間の知識と
判断の場合と同じである。図8に見られるように、ダ
ミーデータでデータ個数を増した分については、推定
精度の向上がより認められない。