多層形吸音材垂直入射吸音率の境界要素法による予測

宇津野 秀夫*1, 田中 俊光*2
森沢 吉孝*2, 吉村 登志雄*2

Prediction of Normal Sound Absorption Coefficient for Multi Layer Sound Absorbing Materials by Using the Boundary Element Method

Hideo UTSUNO, Toshimitsu TANAKA, Yoshitaka MORISAWA and Toshio YOSHIMURA

A method of predicting sound absorbing capability for multi layer sound absorbing materials was studied by using the boundary element method. The sound absorbing material was considered as a medium transmitting sound waves, and it was characterized by the complex propagation speed and the complex effective density, which were measured using the two-microphone technique. The sound field containing the sound absorbing materials was analyzed using the boundary element method developed for multi domain problems. The normal sound absorption coefficient of the materials was calculated and compared with the experimental coefficients. The excellent agreement achieved suggests that the present method is sufficiently reliable to predict the normal sound absorption coefficient.

Key Words: Sound, Boundary Element Method, Simulation, Transfer Function, Measurement, Sound Absorbing Material, Sound Absorption Coefficient

1. 結 言

静かで快適な空間が、労働環境・日常生活を問わずあたりある状況で強く望まれ、機械類の騒音低減が積極的に押し進められている。これに機械騒音の低減において、吸音材是非常に重要な役割を果たし、これまでにも幅広く用いられ、また研究(11)-(14)も進められてきた。しかし、これまででは吸音材の吸音特性を簡便に予測する技術が十分ではなく、発生する騒音に適した吸音材の構成を、効率良く選定できる状況にはなかった。本論文では、多層形吸音材構成の最適選定を目指し、任意形状多層形吸音材の垂直入射吸音率を予測する方法を提示する。

吸音材の吸音性能を予測するには、まず始めに吸音材の実効密度と吸音材中の音波の伝搬速度とを知ることが重要である。近年、従来の実験的手法(15)と二点マイク手法(16)(17)を組み合わせ、少量の吸音材サンプルから、簡便に実効密度と伝搬速度を求める手法が、寺尾ら(18)と著者ら(19)により報告されている。

実効密度と伝搬速度とが得られると、吸音材のBulk-reacting効果(20)を考慮に入れた吸音音場解析が可能になる。これまでに、消音ダクト性能予測(21)(22)や車室共鳴周波数予測(23)の分野で、計算と実験との良好な一致が報告されている。しかし、任意形状多層吸音材の垂直入射吸音率を、吸音材のBulk-reacting効果を考慮して計算し、実験との比較を試みた例は少ないようである。

本論文では、多層形吸音材を二次元境界要素法（以後BEMと称す）を用いてモデル化し、実験的に求めた吸音材の実効密度と伝搬速度を入力として、多層形吸音材の垂直入射吸音率を垂直入射音響インピーダンスを計算する手法を提示する。また、二点マイク手法を用いた吸音率の測定値と本手法による計算値との比較を行い、両者の一致度が良好であることを示す。

2. 解 析 理 論

2-1 部分音場領域の離散化 著者らは、境界要素法を用いて閉音場問題を解析する際の計算精度などを検討してきており(19)-(21)、ここでは、以下の手法で定式化を行う。

図1(a)に示す二つの二次元音場領域Ω₁, Ω₂を考える。それぞれの領域で次の波動方程式が成り立つ。
\(P'p_{1} + k_{1}p_{1} = 0 \) \(\text{in } \Omega_{1} \) \(\cdots \cdots \cdot (1) \)
\(P'p_{2} + k_{2}p_{2} = 0 \) \(\text{in } \Omega_{2} \) \(\cdots \cdots \cdot (2) \)

ここで、\(p \) は音圧、\(k \) は波速定数、\(\omega \) は角速度、\(c \) は伝播速度を表し、添字 1, 2 はそれぞれの領域を意味する。

各領域の境界を、図 1(b) に示すように有限長の線分で近似して、各々の領域での積分方程式を得る。

\[
C(i)\rho(i) = -\int_{\Gamma} \left[\rho \frac{\partial \phi(i)}{\partial n} + j \omega \mu \rho \phi(i) \right] \, d\Gamma
\]

\(\text{in } \Omega_{1}, \Omega_{2} \) \(\cdots \cdots \cdot (3) \)

ここで、\(C(i) \) は点 \(i \) の位置により定まる係数で、点 \(i \) が滑らかな境界上にある場合は \(C(i) = 1/2 \) である。\(\Gamma \) は各領域の境界を表し、\(n \) は境界における法線方向のベクトルを、\(\rho \) は媒質の密度を、\(\mu \) は境界における法線方向の粒子運動の大きさを表す。また、関数 \(\phi \) は第 2 種のハンケル関数を用いて、

\[
\phi(i) = \frac{1}{4j} H_{0}(kr) \cdots \cdots \cdot (4)
\]

\[
\frac{\partial \phi(i)}{\partial n} = -\frac{k \cos \theta}{4j} H_{1}(kr) \cdots \cdots \cdot (5)
\]

と表される。ただし、\(r \) は点 \(i \) と点 \(l \) の距離を、\(\theta \) は線分 \(i-l \) と境界法線とのなす角である。

領域 \(\Omega_{1}, \Omega_{2} \) が接する境界での連続性を考える。法線方向の粒子速度の連続と音圧の連続から

\[
u_{i} = -\nu_{l} \cdots \cdots \cdot (6)
\]

\[
p_{i} = p_{l} \cdots \cdots \cdot (7)
\]

境界要素として一定要素を用いてモデル化し、積分を実行すると、領域 \(\Omega_{1}, \Omega_{2} \) に関して、次のマトリックス方程式が得られる。

\[
[H_{i}]\rho_{i} = [G_{i}]\nu_{i}, (i = 1, 2) \cdots \cdots \cdot (8)
\]

領域 1 と 2 におけるそれぞれのマトリックス方程式を合成し、加振要素の \(\nu_{1} \) の値を与えることで、境界面上の音圧と粒子速度が計算される。

2.2 BEM 計算と解析解との比較

提案した手法の妥当性を検証するため、まず図 2(a) に示す仮想吸音材の垂直入射吸音率を計算し、解析解との比較を行った。同図で、領域 \(\Omega_{1}, \Omega_{2} \) は媒質が無であり、領域 \(\Omega_{3} \) には吸音材が充てんされている。吸音材は、便宜上、実効密度 \(\rho = 7-10j \) kg/m³、伝播速度 \(c = 100 + 40j \) m/s とし、その特性は周波数に一定と仮定する。左端のビストンを粒子速度 \(\nu_{0} = 1 \) m/s で加振し、その時ビストン面上に発生する音压 \(P_{b} \) を計算し、次式に代入して吸音率 \(\alpha \) を求めた。

\[
\alpha = \frac{4Z_{w} \Ree{P_{b}/\nu_{0}}}{(\Ree{P_{b}/\nu_{0}} + Z_{w})^{2} + (\Imm{P_{b}/\nu_{0}})^{2}} \cdots \cdots \cdots (9)
\]

図 2(b) に吸音率の計算結果を示す。図示で、\(\rho_{2} \) は BEM 計算値を、実線は伝達マトリックス法で得られた解析解を表している。両解は非常に良く一致しており、BEM 計算手法の妥当性が確認される。なお、BEM 計算では一要素の長さは 5 mm である。これは、一般に吸音材中では、音の伝搬速度が空気中より遅くなるため、吸音材中の波長を考慮して要素粗さを決めたためであり、2 kHz での一要素長さと波長との比は 1/10 である。

3. 吸音材料

3.1 吸音材の音響特性測定手法　前章に示した
手法を実験的に適用するため、吸音材の伝搬速度と実効密度をImproved two-cavity法を用いて測定した。図3に測定装置を示す。吸音材の厚みをd、背後空気層の深さをLで、二点マイク法で測定した吸音材表面の比音響インピーダンスをZa、吸音材背後の比音響インピーダンスをZiとする。ここで、(10)は空気層の深さを変えた時の値を示す。二点マイク手法で測定したZa、Ziと、解析的に与えることができるZa、Ziとを次式に代入して、吸音材の特性インピーダンスρcと伝搬速度cを求める。

\[
\rho_c = \pm \left[\frac{Z_a Z_i (Z_i - Z_a) - Z_a Z_i (Z_a - Z_i)}{(Z_i - Z_a) - (Z_a - Z_i)} \right]^{1/2}
\]

(10)

\[
c = \frac{Z_a - \rho_c}{Z_i + \rho_c}
\]

(11)

ここで、式(10)中の右辺の符号は、ρcの実数部がプラスになるように選ぶ。ただし、

\[
Z_i = -Z_{air} \cot(kL)
\]

(12)

\[
Z_a = -Z_{air} \cot(kL)
\]

(13)

ここで、Z_{air}は空気の特性インピーダンスを表す。

3-2 吸音材の音響特性測定結果 供試吸音材としてグラスウールと多孔コンクリート（図4）を用いた。表1に供試体形状と測定条件を示す。特性のばらつきを調べるため、同一シートより4個のサンプルを切り出し、伝搬速度と実効密度を測定した。図5（a）、（b）にグラスウールの伝搬速度と実効密度を示す。また、図6（a）、（b）に多孔コンクリート吸音材の伝搬速度と実効密度を示す。同様に、各サンプル間に若干特性の違いはみられるが、全体としては、ほぼ同一の傾向を示しており、このため4ケースの平均値で材料の特性を代表できると考えられる。なお、同図では、300 Hzから2 kHzの周波数域で吸音材の特性を示したが、これらの上下限の周波数値の値は、二点マイク手法におけるマイク間距離から定まるものであり、必要に応じて変更可能である。

4. 吸音率の計算と実験との比較

4-1 実験 提案した手法の妥当性を検証するため複雑形状吸音材の吸音率を実験的に測定し、BEM

表1 吸音材と測定条件

<table>
<thead>
<tr>
<th>吸音材</th>
<th>厚さ</th>
<th>密度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass wool</td>
<td>25mm</td>
<td>30 kg/m³</td>
</tr>
<tr>
<td>Porous concrete</td>
<td>50mm</td>
<td>320 kg/m³</td>
</tr>
</tbody>
</table>

図3 Improved two-cavity法

図4 多孔コンクリート吸音材

図5 (a) グラスウール伝搬速度

図5 (b) グラスウール実効密度

NII-Electronic Library Service
計算値と比較する。図7に吸音率測定装置を示す。音響管は、内径60×60 mmの角ダクトで、右端に吸音材が取付けられ、黒灰色の合板で、白い細管が発せられる。図7に示すマイクロホンPaより距離Lx位置における音響インピーダンスは、次式で計算される。

\[Z = P/Lx \]

\[= j\omega \frac{H\sin(kLx)+\sin[k(Lx+Dx)]}{H\cos(kLx)-\cos[k(Lx+Dx)]} \]

…………(14)

ただし、\(H \) は二点マイク間の音強度伝達関数で、\(H(\omega) = P_b/P_a \) とする。この時のマイク間距離 \(D_x = 70 \) mmである。また \(L_x \) は、図8(a)、図9(a)に示す吸音材モデルのピストン端に相当する位置とする。これより吸音率は、得られたインピーダンス値を式(9)に代入して計算される。

4.2 吸音材モデル 1 図8(a)に示すように、厚さ25 mmのガラスウールと厚さ20 mmの多孔コンクリートを重ね、背後に20 mmの空気層を持つ多層吸音材の吸音性能を計算する。BEM計算では、要素長を5 mmとし、空気で占められる領域の伝搬速度を

図6

(a) 多孔コンクリート伝搬速度
(b) 多孔コンクリート実効密度

図7 吸音率測定装置の構成

図8

(a) 吸音材モデル
(b) 垂直入射吸音率の比較
(c) 音響インピーダンスの比較
多層形吸音材垂直入射吸音率の境界要素法による予測

4-3 吸音材モデル2 厚さ20 mmのグラスウールと多孔コンクリートから構成され、上下方向に音圧変化する吸音材モデルを図9(a)に示す。モデル1と同様な扱いにより、図9(b)に吸音率を、図9(c)に加振面の音響インピーダンスを示す。本モデルにおいても、計算値と実験値とは非常に良く一致しており、これまで予測することができなかった複雑形状吸音材の吸音性能が、BEMを用いて精度良く計算できることがわかる。

5. 結 言

境界要素法を用いて、任意形状多層形吸音材の吸音性能を予測する手法を示した。この手法を代入する吸音材の材料定数は、Improved two-cavity法で実測することができる。本手法を用いて計算した吸音率と音響インピーダンスとの値を、実験値と比較したところ良好な一致を得、任意形状多層形吸音材の吸音率を、実用の精度で予測することが可能であることがわかった。

文 献

(4) こども・おはなし2名, 機論, 49-448, C(1983), 2155
(12) Utsuno, H., ほか3名, AIAA J., 28-12 (1990), 掲載予定
(13) 田野・ほか3名, 稼論, 50-453, C(1984), 848.
(14) 田野・ほか3名, 稼論, 50-460, C(1984), 2336.
(15) 田野・ほか3名, 稼論, 53-491, C(1987), 1443.