SEM・トライボシステムによる摩耗の微視機構の研究*
（繰返しすべり摩擦における微視的摩耗形態の遷移とその予測）

橋内浩之*1，加藤 康司*2
堀切川一男*3，井上 潤*4

The Study of Microscopic Wear Mechanism by a SEM-Tribosystem (Transition of Microscopic Wear Mode during Repeated Sliding Friction)

Hiroyuki KITSUNAI, Koji KATO,
Kazuho HOKKIRIGAWA and Hiroshi INOUE

Microscopic wear mechanism during repeated sliding was investigated by in-situ observation with a newly developed SEM-tribosystem. Microscopic wear mode transition during repeated sliding progressed from cutting to wedge to shear–tongue and to ploughing. The transition between wear modes coincided with the change in the degree of penetration, Dw, which was introduced as an index to describe the severity of microscopic contact. In addition, the relationship between the number of sliding cycles, N, and the wear coefficient, K, was explained by using the degree of penetration, Dw.

Key Words: Tribology, Wear, Friction, Wear Mode Transition, Repeated Sliding, Microscopic Observation

1. 結言

機械の摩耗面における摩耗は機械の性能を急激に劣化させ、時には機械全体の破壊を誘発する。Kragelsky らによれば機械の寿命の 75％は摩耗面における摩耗に起因するとされている23)。古くから重要視されているような摩耗は現代の精密機械と生産技術において新たな問題を生んでいる。すなわち、コンピュータ記憶装置における磁気ディスクとヘッドの摩耗の制御24)、超 LSI 生産のためのスーパーコーニルームのあらゆる摩擦面からの微小摩耗粒子発生の制御25)26)，微視的摩耗現象である超精密研磨におけるナノメーターオーダーの表面粗さ制御などが求められてい27)28)。

このような多岐にわたり先端化しつつある摩耗の問題であるが、このような摩耗を制御するために有効な摩耗機構の解明は、これまであまり進展していなかった。その最大の理由は、摩耗面における摩耗発生の微視機構を直接観察することができず、微視的摩耗特性を想像のモデルでのみ考察していたことにある29)30)。

このような過去の状態に対し、最近著者らは、SEM・トライボシステムを開発し31)32)，これを用いて様々な摩耗の微視機構を明らかにし、最終的に「摩耗形態図」を導いた33)。

しかし、これら一連の研究は、すべて処女面摩擦における摩耗を取扱っており、より一般的な摩耗理論確立のためには、繰返し摩擦過程における摩耗機構を明らかにする必要があった。

以上のようないずれも基礎研究における摩耗機構解明のニュースと、従来技術に関する一連の基礎研究を背景にして、本研究においては、繰返しすべり摩擦における摩耗の形態を解明し、さらに摩耗係数の変化過程を明らかにする。具体的には、摩耗形態の変化条件と表面を有効な指標を導き、それを用いた前記の理論的予測と実験結果の一致を確認する。さらに微視的摩耗形態が形成状態に影響を及ぼす態の摩擦係数と摩擦繰返し数の関係を調べる。

このような目的のために、繰返しすべり摩擦を VTR による連続観察を可能にする新たな SEM・トライボシステムを実験装置として開発製作した。
2. 実験装置および実験方法

図1に本実験で用いたSEM・トライポシステムの全体の構成図を示す。このトライポシステムでは、摩擦試験機がSEM内に組み込まれており、微細な摩耗現象の観察が可能である。観察される摩耗現象は、VTRにより連続記録され、実験後に詳細に分析される。さらに、X線マイクロアナライザ（EPMA）により、摩擦面に摩耗粒子の元素分析を行うこともできる。

図2に摩耗試験部の詳細図を示す。試験系は真空ディスク状試験装置である。負荷荷重は、負荷用ばねによりピシニホールに固定されたピンに加えられる。一方、ディスクは2箇所の玉軸受で支持されている軸に固定されており、ACモータにより任意の速度で回転駆動される。ミクロオーダで正確に繰り返し摩耗を行うために、摩耗試験部の構成部品は、高い剛性を有する設計され、また高精度に加工されている。このために、ピシミンジによる摩耗の測定は行われない。摩耗試験機を載せているステージは、X軸、Y軸、Z軸、方向に±15 mmの移動と、X軸まわりに±90°の範囲で回転が可能であり、広範囲の角度からの観察が可能である。実験条件を表1に示す。ピン試験片の材料は超硬合金（WC, H_v=1300）である。その先端の曲率半径は30 μmの球面（R_{max}=0.1 μm）以下である。一方、ディスク試験片の材料は、18Cr-8Niステンレス鋼（SUS304, H_{V}=280）であり、表面はバブ研磨による鏡面（R_{max}=0.2 μm）以下である。ピン、ディスク両試験片は、アセトン液中で超音波洗浄された後に実験に供された。両試験片を摩耗試験機に取付け、所定の荷重を加えた後SEMに組み込み、SEM観察が可能な圧力（10^{-3} Pa以下）まで真空排気したのち、実験が行われた。摩擦速度はSEM観察が可能な最大速度である400 μm/sを保つ。荷重は0.07 Nから1.5 Nまで変化させられた。

3. 実験結果

3-1 微視的摩耗形態の分類

継返しすべり摩擦において観察された微視的摩耗形態は、Cuttingタイプ、Wedgeタイプ、Shear-tongueタイプ、Ploughingタイプの4種類に分類された。それぞれの摩耗形態の特徴を良く示すSEM写真を、図3（A）、（B）、（C）、（D）に、またそれぞれのタイプの摩耗形態に対応する代表的な摩耗粒子のSEM写真を図4に示す。以下にそれぞれの摩耗形態の特徴について説明する。

（1）Cuttingタイプ：ピンのすぺリに伴い、図3（A）の（a）→（b）→（c）に示すように接触部前縁に細長いリボン状摩耗粒が連続的にディスクより形成される。図4（a）にCuttingタイプの摩耗粒子の形状を示す。

（2）Wedgeタイプ：ピンのすぺリに伴い、図3（B）の（a）→（b）→（c）に示すように接触部前縁にくさび形の摩耗粒子（Wedge）がディスク表面より形成される。Wedgeはピン前縁に付着し、その後のすぺリはWedge底面において維持される。図4（b）にWedgeタイプの摩耗粒子の形状を示す。

（3）Shear-tongueタイプ：ピンのすぺリに伴い、図3（C）の（a）→（b）→（c）に示すように、接触部前縁に薄片状の摩耗粒子（Shear-tongue）が断続的にディスク表面よりせきだし脱落する。図4（c）にShear-

Pin specimen	WC (R_{max}=0.1 μm)
Disk specimen	SUS304 (R_{max}=0.2 μm)
Sliding speed	400 μm/s
Load	0.07 N〜1.5 N

図1 SEM・トライポシステム構成図
図2 摩耗試験機詳細図
tongue タイプの摩耗粒子の形状を示す。
（4） Ploughing タイプ：ビンのすすりに伴い、図3（D）の（a）→（b）→（c）に示すように、摩耗痕が塑性変形の結果として残されるが摩耗粒子は形成されない。

3-2 微視的摩耗形態に及ぼす荷重および摩擦繰返し数の影響 本実験により図3のように観察された微視的摩耗形態を荷重および摩擦繰返し数で整理した結果を図5に示した。図中、Ploughing-Shear-tongue の領域では、Ploughing タイプの摩耗が支配的であるが、それに加えてShear-tongue タイプの摩耗が断続的に発生した。

(A) Cutting タイプ

(B) Wedge タイプ

(C) Shear-tongue タイプ

(D) Ploughing タイプ

図3 繰返しすずり摩擦における微視的摩耗形態のSEM写真

図4 各摩擦形態における摩耗粒子の形状

--- 321 ---
図5より、摩耗形態は、摩耗の初期過程において荷重の増加に伴い、Ploughingタイプ→Shear-tongueタイプ→Wedgeタイプ→Cuttingタイプと遷移し、摩擦繰返し数の増加に伴い、Cuttingタイプ→Wedgeタイプ→Ploughingタイプ→Shear-tongueタイプと遷移することがわかる。そして、摩擦繰返し数が10サイクルを超えると、多くの場合、摩耗形態がPloughingタイプ→Shear-tongueタイプに落ち着く傾向にあることがわかる。

3-3 微視的摩耗形態と食込み深さの関係
前節において、明らかにされた微視的摩耗形態の遷移過程における摩擦繰返し数Nと摩耗痕深さhₚの関係を図6に示す。なお、摩耗痕深さhₚは表面粗さ計によりその値を求めた。図6(a)は、急速に微視的摩耗形態が遷移する10サイクルまでの過程における関係を示し、図6(b)は、1000サイクルまでの長期過程における関係を示す。図より明らかのように、摩耗痕深さは、摩擦繰返し数が増加するのに伴い増加する。したがって、摩耗痕深さの増加は、摩擦繰返し数の増加に従って増加している。

そこで、Nサイクルごとの摩耗痕深さの増加を“食込み深さ”とし、Δhₚ(=hₚ-Nₚ)で表し、図6(a), (b)よりΔhₚとNの関係を求めれば、図7(a), (b)が得られる。ただし、図7(b)は、図6(b)の実験結果を表す次式の実験式を求める。それを用いて算出したものである。

\[hₚ = aN^{n} \]

なお、図7(a), (b)には、同時に観察された摩耗形態の発生領域も併記してある。

この結果より、微視的摩耗形態が遷移する条件は、
食込み深さΔhₚにより、以下のように分類されることがわかる。

Cuttingタイプ: 4.7μm< Δhₚ
Wedgeタイプ: 0.5μm< Δhₚ<4.7μm
Ploughingタイプ→Shear-tongueタイプ:
0< Δhₚ<0.5μm

以上の結果より、3-2節で述べた摩擦繰返し数の増加に伴う微視的摩耗形態の遷移は、摩擦繰返し数の増加に伴う食込み深さΔhₚの減少に対応して生じていることがわかる。この微視的摩耗形態の遷移現象の物理的意味については、4-1節で詳しく述べる。

図6 摩擦繰返し数と摩耗痕深さの関係
3-4 Ploughing タイプ・Shear-tongue タイプにおける摩擦繰返し数と摩耗係数の関係 すべり摩擦における摩耗の大小を表すために、次式で定義される摩耗係数 \(K \) を用いれば、

\[K = (V/L) \cdot (H_v/W) \] (2)

\(V \)：摩耗体積、\(L \)：すべり距離、\(H_v \)：硬さ、\(W \)：荷重

Cutting タイプの摩耗において \(K \approx 1 \)、Wedge タイプの摩耗において \(K \approx 10^{-1} \)になることが著者らの研究によりすでに明らかにされている(12)～(15)。

そこで本研究では、繰返しすべり摩擦の大部分において支配的な Ploughing タイプ・Shear-tongue タイプにおける摩耗係数の値を、荷重 0.2 N の場合について求めた。図8が摩擦繰返し数 \(N \)と摩耗体積 \(V \)の関係を表す摩耗進行曲線である。図9がこの時の摩耗体表面における硬さ \(H_v \) の変化である。摩擦繰返し数の増加に伴うこのような硬さの増加は、加工硬化の進行によるものと考えられる。

図7 摩擦繰返し数と食込み深さの関係 図8 摩耗進行曲線（荷重 0.2 N）
図9 摩耗体積と摩耗体表面硬さの関係（荷重 0.2 N） 図10 摩擦繰返し数と摩耗係数の関係（荷重 0.2 N）
これら図8と図9の結果と式(2)より、摩擦縫返し数Nと摩耗係数Cの関係を求めれば図10を得られる。図10より明らかように、Ploughingタイプ・Shear-tongueタイプおよびShear-tongueタイプにおける摩耗係数の値は10⁻³〜10⁻⁴のオーダであり、CuttingタイプまたはWedgeタイプに比べ非常に低い値であることがある。また摩擦縫返し数が50サイクル付近ではK≒1.8×10⁻³でほぼ一定である。それ以降はNの増加とともに減少し始めることがわかる。

4. 考察

4・1 縫返しすべり摩擦における食込み度の導入
縫返しすべり摩擦においては、接触部の形状、硬さ、荷重、および縫返し数が摩耗形態を決定する主なパラメータになると考えられる。著者らは、これまでに処女面摩耗による摩耗形態の研究において、摩耗機構を理解するために、接触部の形状、硬さ、および荷重を考慮に入れた変数“食込み度D_p”を導入し、摩耗形態を整理するのに有効であることを示してきた。食込み度D_pは、接触の厳しさを表す無次元数であり、図11(a)に示す接触モデルにおいて、次式で定義される。

\[D_p = \frac{h}{a} \] \hspace{1cm} (3)

ここで、a：接触円の半径、h：食込み深さ

これに対し本研究では、摩耗形態に及ぼす摩擦縫返し数の影響を明らかにすることが目的であるため、摩擦縫返し数Nにおける食込み度D_{p_n}(N≧2)を、縫返し摩擦における接触状態を示す指標として新たに導入する。各摩擦縫返し数におけるD_{p_n}は、図11(b)に示す接触モデルにおいて次式で定義される。

\[D_{p_n} = \Delta h_n \sqrt{R^2 - (R - \Delta h)^2} \] \hspace{1cm} (4)

ここで,

\[\Delta h_n : N \]サイクルにおけるすべり方向に平行な接触長さ

\[h_n : N \]サイクルにおける食込み深さ

摩耗形態の遷移が起こる初期摩耗過程(N=1〜10)を注目し、図7(a)と図8より求められた摩擦縫返し数と食込み度の関係を図12に示す。図12には観察された摩耗形態の領域も併せて示している。これより、縫返し摩擦において摩耗形態は、ある臨界食込み度D_{p_n_c}により遷移することがわかる。各摩耗形態を分ける臨界食込み度D_{p_n_c}の値は以下のように示される。

Cutting → Wedge : D_{p_n_c}=0.27
Wedge → Ploughing・Shear-tongue : D_{p_n_c}=0.09
Kato-Hokkirigawaは、Challlen-Oxleyによる摩耗機構のすべり線図解析を基礎にして、材料を剛塑性体と仮定した場合の摩耗形態図を理論的に求め

図12 摩耗縫返し数と食込み度の関係(N=1〜10)

図13 摩耗形態図
ている。この摩耗形態図を図13に示す。摩耗形態は食込み度 D_p と接触面の無次元のせん断強度 f の関数として分類することができる。ここで、f とせん断強度のせん断強さと母材のせん断強さの比である。スレンストレスの場合、$f = 0.85^{[18]}$ であり、このとき Cuttingタイプ→Wedgeタイプ、およびWedgeタイプ→Ploughingタイプの境界食込み度は、摩耗形態図によれば各々0.27、および0.1となる。摩耗形態図により求められた理論的各摩耗形態の領域を図12に示す。図でブロックダイヤグラムにより示されていることのわかる。一方、Wedgeタイプ→Ploughingタイプ→Shear-tongueタイプのせん断強度の関係に対する境界食込み度の実験値は、摩耗形態図におけるWedgeタイプ→Ploughingタイプのせん断強度に対する境界食込み度の理論値とよく一致していることのわかる。

4-2 緩返しすべり摩擦における摩耗形態遷移の予測
前節で、緩返しすべり摩擦における食込み度 D_p の値により、摩耗形態を予測できることが示した。そこで本節では、摩耗形態を摩擦係数と摩擦係数比を用いた解析を基に、食込み度の値を求める計算式を導き、計算値と実験値との比較によりその計算式的有効性を検討する。

摩耗繰返し数 $N=1$における摩耗形態は、初期の接触状態により決まり、摩耗繰返し数の増加に伴う食込み度 D_p の減少に従って摩耗形態は遷移して行く。まず、図11(a)に示したのばしのビンとディスクの接触モデルにおいて、もし接触面がディスクの硬さ H_d（ピッカース硬度）に等しいと仮定すれば $N=1$における食込み度 D_p は次式で表される。

$$D_p = R_p \frac{R}{(b_n^2 - b_n^*)} = \sqrt{R^2(b_n^2 - b_n^*)} - 1$$

ここで、b_n^*: サイクル後の摩耗量度の1/2
b_{n-1}: サイクル後の摩耗量度の1/2
ただし、b_n は次式の解で与えられる。

$$b_n + 2b_n^3 - b_n^* - 2b_n^2b_n^* = 0$$

(1)

摩耗形態の予測に用いる飽和摩耗度を図14の実験結果と計算結果の比較を示す。なお、Nサイクル度の摩耗量度を計算するため、Nサイクル後の摩耗度の1/2を用いて計算した食込み度 D_p と実験結果との比較を

4-3 Ploughingタイプ・Shear-tongueタイプにおける食込み度と摩耗係数の関係
前節で示し、Cuttingタイプ→Wedgeタイプ→Ploughingタイプ→Shear-tongueタイプという徴の摩耗形態の遷移は、緩返し摩擦の初期に起こり、その遷移条件は摩耗繰返し数に伴い変化する食込み度 D_p の概念で説明できることが示した。徴の摩耗形態が Ploughingタイプ・Shear-tongueタイプに落ち着いても摩耗係数は、図10に示されるように摩耗繰返し数に伴い変化する。そこで本節では、Ploughingタイプ・Shear-tongueタイプにおける摩耗係数の摩耗繰返し数に伴う変化について食込み度 D_p を用いて考察する。
図10に示したように、荷重0.2Nの場合には、摩擦線返し数60サイクルにおいて摩耗係数が低下し始め、この時の食込み度は図7（b）および式（4）より0.015になる。そこで、このような摩耗係数の低下を接触状態の変化から考えてみる。

Kragelsky(20)によれば、くさび形硬突起と平面の摩擦において完全塑性接触→弾塑性接触の遷移に対応する臨界接触角 θc は次式で与えられる。

\[\tan \theta_c = \frac{2H_c}{E(1-\nu)} \]

\[H_c \text{：平面の硬さ, } E \text{：平面のヤング率, } \nu \text{：平面のポアソン比。} \]

一方、著者の研究によれば(18), 式（8）の θc に対応する臨界食込み度 Dp, for は、θc を用いて次のように表される。

\[D_{p, for} = 0.8 \times \frac{1 - \cos \theta_c}{\sin \theta_c} \]

（8） 式（9）より、Hc, E, νの値が与えられ、塑性接触→弾塑性接触の遷移に対応する臨界食込み度 Dp, for の値を得ることができる。本研究で用いたステンレス鋼の絞り弾性係数の値は E=210 GPa であり、ポアソン比の値は ν=0.3 である。また図9より50サイクルにおける硬さの値は Hc = 4.5 GPa (450 kg/mm²) である。以上の値を用いれば式（8）、（9）より、Dp, for = 0.016 と計算される。この値は図7（b）より求められる摩耗係数の低下が開始する際の食込み度 0.015 に非常に近い値である。したがって、Ploughingタイプ・Shear-tongueタイプの摩耗における摩耗係数の低下は、完全塑性接触から弾塑性接触への遷移によって起こるとえられ、弾塑性接触下では、弾性接触の割合が増えるに従ってShear-tongueの発生頻度は減少し、摩耗係数の低下を引き起こすものと考えられる。

以上の、一連の議論と結果より、線返しすべき摩擦における摩耗の微視機構は次のようにまとめられる。本研究で接触状態を示す指標として導入した食込み度 Dp は、摩耗線返し数の増加とともに減少し、これが摩擦初期における微視的摩耗形態の遷移を生じさせる。この遷移過程は、Dp と著者らが導いた摩耗形態図により予測することが可能である。また、微視的摩耗形態がPloughingタイプ・Shear-tongueタイプに落ち着いた段階では、完全塑性接触の場合の摩耗係数は 1.8×10⁻² であり、弾塑性接触の開始する摩耗線返し数以降では、摩耗線返し数の増加とともに低下して行く。この摩耗係数の低下の始まる食込み度は、式（8）、（9）より予測することが可能である。

5. 結 論

摩耗理論を基にして、線返しすべき摩擦における摩耗を取り上げ、新たに開発したSEM・ドライポジットを用いた実験と理論解析により、その微視機構を明らかにした。具体的には次の結論を得た。

（1）線返しすべき摩擦過程には、4種類の微視的摩耗形態が存在し、それらは摩擦の線返しに伴い、次の順序で遷移する。

Cutting → Wedge → Ploughing → Shear-tongue

（2）摩擦の線返しに伴う変化する無次元パラメータとして、食込み度 Dp を導入し、それを摩耗形態図に適用することにより、微視的摩耗形態の遷移機構を説明することができる。

（3）食込み度 Dp を用いることにより、摩擦線返し数と摩耗係数の関係を説明することができる。

終わりに、実験の遂行に協力いただいた東北大学大学院生、大村真史君に謝意を表す。

文 献

(2) 金子, 日本機械学会第20回夏季セミナー講義集, (1986), 1.
(3) 大見, サブミクロン ULISIプロセス技術II, (1989), 293.
(5) 三橋, 機械と工具, 8(1984), 67.
(6) 有村, 二宮, 積層, 51-7(1985), 12.
(16) Kitsunai, H., Kato, K. Hokkirigawa, K. and Inoue, I., 文献(15)の807ページ。
(20) Kragelsky, I. V., Friction and Wear, Butteworths, (1965), 97.