Bilateral Master-Slave Arms Controlled with Variable Gains by Force-Sensed Grips

Mitsuru SOEDA, Tadayoshi FURUYA
Ryoiti SUGIMOTO and Tadashi YAMASHITA

A method is proposed for bilateral control of master-slave teleoperation, where the system supports some cooperative action between manual and automatic modes. This control method uses a variable gain which changes the connection of dual modes. The bilateral master arm is usually controlled by a computer using known information, but if it is necessary for a human operator to adjust the course, the computer operation can be intervened by moving the master arm by grasping the grid stronger. More intense intervention by human operation is performed by a larger-variable coefficient which depends on the strength of grasping the grid by the human hand. This control configuration realizes efficient master-slave operations with both simplicity of command and flexibility of skilled human operators.

Key Words: Robotics, Bilateral Control, Master-Slave Arms, Teleoperation, Grasping Force

1. はじめに

人間が立ち入ることができないような悪環境下ではマスタ・スレーブアームによる遠隔操作が効果的である。この場合、操作者はより操作しやすくするために、スレーブアームが外界から受ける反力を操作者にフィードバックするバイラテラル制御方式がよく用いられる。この方式は操作者の手から一動作指令を与え、またも手足のようにスレーブを動作しようというものので、人間の持つ高度の適応力、大局的意志決定等の有用な能力を生かして、未知環境における作業での柔軟な対応が期待できる。しかしマスタスレーブシステムの操作性が悪かったり、拘束動作を伴った操作、高精度の制御には操作が複雑で操作者の熟練を必要とする。さらに人間の操作者は疲労により長時間の作業が困難で作業能率がよくないといった問題点がある。

作業能率をあげるため、操作性の向上を目指したシステムがいくつか提案されている。また計算機を使用してシステムにより自動的にコントロールされる方式もある。
制御モードを柔軟に結合する方法を提案する。本方式では操作者が計算機のスライド操作に自在に介入し、共に操作することが可能である。また介入の度合いや操作者が握力を変えることにより簡単に調整できる。最後に本方式の有効性をシミュレーション実験により示すこととする。

2. 補助操作力付加形バイラテラルマスタスレイブ系の構成

一般にマスタスレイブアームのバイラテラル制御において、操作者のシステムへの操作指令は、手からマスタアームへ伝えられる力ベクトルの形式で与えられる。そこで本論文では、計算機からのスライド操作指令を操作者と同じようにマスタアームに振動変数を介して操作力として与える。そのためマスタアームには、計算機による操作力と操作者による操作力の二つの力が動作指令として与えられることになり、これらの合力が実際に動作指令となる。

操作者がマスタアームを放しているときは、計算機がマスタを動かしてステップを操作し、操作者がマスタアームに操作力を加えれば、その力は動作指令ベクトルに加算される形でマスタ運動に反映される。これにより、作業肢に基づいて計算機アームのバイラテラル系の動作中でも、操作者はマスタアームからスライド操作に自在に介入することができる。

マスタアームに操作力が加えられた場合、並列形バイラテラル制御方式では直接スライド制御系に指令が伝達される。このため操作者・計算機の操作力によりスライド動作制御を行う場合マスタ系を考慮に入れなくてよく、時間遅れが少なく、より良好な制御特性を実現できると考えられる。そこで本論文では並列形バイラテラル制御方式を用いてマスタスレイブ系を構成する。

操作者と計算機の操作力の合力をマスタアームへの動作指令とするため、図1のようにマスタアームの力センサで検出された操作者の操作力信号に計算機による操作力信号（点線部分）を加する。計算機による操作力 \(F_a \) はゲイン \(K_a \) を介して操作者の操作力 \(F_s \) を加算し、実際の動作指令ベクトル \(F_a \) は次式で表される。

\[
F_a = F_s + K_a F_s
\]

\(K_a \) は計算機による操作力の優先度を意味し、操作者がこの \(K_a \) の値を変えることによりその優先度を連続的に調整する。またこの \(K_a \) の値を調節することにより、計算機操作力による動作の実行速度を調節することもある。

操作者がリアルタイムで連続的に優先度を調節し、計算機と操作者の柔軟な操作分担を円滑に行うためには、調節手順が簡易で操作性のよいものでなければならず、そこでマスタアームの先端部のグリップに握力センサを付加し、操作者のアーム操作時の握力をもとに次式のように優先度 \(K_a \) を決定する。

握力 \(F_C \) に対し

\[
K_a = \begin{cases} 1 & (0 \leq F_C < F_{C}^{\text{MM}}) \\ \frac{F_{C}^{\text{MM}} - F_C}{F_{C}^{\text{MM}} - F_C} & (F_{C}^{\text{MM}} \leq F_C < F_{C}^{\text{MM}}) \\ 0 & (F_{C}^{\text{MM}} \leq F_C) \end{cases}
\]

ここで \(F_{C}^{\text{MM}} \) は不感帯の大きさ、\(F_{C}^{\text{MM}} \) は飽和特性を表す。

これによると、操作者がより強くマスタアームを操作するほど、あるいはより強くグリップを握るほど操作者による操作の優先度が高くなり、逆にマスタアームに加える力を減らすほど、計算機による操作の優先度が高くなる。また操作者がマスタアームに加えた操作力はいかなる時点においてもスライドアーム動作に反映されるので、計算機に操作を任せてもいつでも操作者の思いどおりにスライドアームを動作させることができる。
3. スレイブ先端の位置制御

計算機によりスレイブ先端の位置制御を行う場合、その指令は現在のスレイブ位置 X_s から目標値 X_a への移動指令の形式で与される。そこで図2のように、このときの計算機による操作力 F_s を

$$F_s = -K_c(X_a - X_s)$$

で与える。ここで K_c は正の定数である。

これは、スレイブ反力制御系に P 動作による位置制御ループを加えたもので図の点線部が計算機内部での処理に相当する。

実際には、この操作力が大きすぎるとスレイブアクチュエータが非常にしやすく、操作者が介在が間に合わない場合も考えられ、次式のように適当な飽和値 $F_{s_{\text{max}}}$ を設けることにより、作業環境の低下が問題にならない範囲でスレイブアクチュエータ動作の最高速度を制限する。

$$F_s = \begin{cases}
-K_c(X_a - X_s) & (|K_c(X_a - X_s)| < F_{s_{\text{max}}}) \\
-F_{s_{\text{max}}} & (|K_c(X_a - X_s)| \geq F_{s_{\text{max}}})
\end{cases} \quad (2)$$

また移動操作は、スレイブアクチュエータ先端が目標位置に対応してある微小距離以内、動作速度がある微小速度以下になったとき完了する。

4. シミュレーション実験

本方式の有効性を検討するため、パーソナルコンピュータ上に1自由度のバイラテラルマスタスレイブ作業システムを構成し、スレイブ先端の位置制御を対象としたシミュレーション実験を行った。

4-1 実験システムの概要 マスタスレイブアームは図3のように直線座標上の対象物の運搬を目的とした構造で、それぞれ1自由度直線移動機構を持ち、各アームの先端にパネを介してマスタースレイブにグリップ、スレイブアームにはハンドを付いている。これらはグリップ、ハンド以外は互いに全く同じ特性を有したものとする。

いま、マスタアーム・スレイブアーム先端の位置をそれぞれ X_m, X_s 速度を V_m, V_s グリップ・ハンドの位置を X_m, X_s 外界から受ける反力を F_m, F_s とする。またばね定数を K_p, グリップ・ハンドを含むアームの慣性質量を J とすると

$$F_m = K_p(X_m - X_s)$$
$$F_s = K_p(X_s - X_s) \quad \quad (3)$$

が成り立つ。

図1の速度制御として PI 制御を用いるとマスタ (スレイブ)系のブロック線図はそれ図4のようになり、系の状態方程式は次式で表される。ただしマスタ (m), スレイブ (s) の添字は省略してある。

$$\frac{d}{dt} \begin{bmatrix} X \\ V \\ Z \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -K_p/J & 1/J \\ 0 & -K_s & 0 \end{bmatrix} \begin{bmatrix} X \\ V \\ Z \end{bmatrix} + \begin{bmatrix} K_p/J \\ 1/J \\ K_s \end{bmatrix} \begin{bmatrix} U \end{bmatrix} \quad \quad (4)$$

ここで K_p, K_s はそれぞれ速度制御系の比例ゲイン、積分ゲイン、U は速度指令値で、マスタ・スレイブ系に操作力 F_m, F_s を

$$F_m = F_s + K_p F_s$$
$$U = -K_s(F_m + F_s) \quad \quad (5)$$

として与えることにより本論文で提案する1自由度のバイラテラルマスタスレイブ系が構成される。

以上のシステムをパーソナルコンピュータ上で実現した。実験装置の概要を図5に示す。パーソナルコンピュータに AD 変換ボードを介して台上に固定され
た力検出グリップを接続し、このグリップをマスターハームのグリップとして操作力の検出を行う。
さらに操作者の握力により優先度のゲイン調整を行うため、マスターハームのグリップに圧力センサを取付ける。圧力センサとしては圧電素子などが考えられるがドリフトを生じたり、ゲイン調整が難しいため図6のような簡単な機械的検出機構をグリップに取付けて用いた。2本の取っ手の間にばねを取付け、この取っ手を握ることによりばねに変位を与え、この変位に応じて抵抗値が変化しゲイン調整を行うことができる。

操作力F_aには力検出グリップで検出された操作力を用い、同時に検出した握力F_Gにより式(1)に基づいて優先度K_aが決定される。計算機の操作力F_aは計算機内にあらかじめ与えられた作業情報に基づいて式(2)の形で位置制御を行うようになっており、式(5)のようにF_aが決定される。

こうして操作者はCRT画面でスライブ先端部のハンドと対象物の位置を確認しながら力検出グリップを操作することで計算機によるスライブ操作へ介入し、操作者および計算機の操作力の優先度を調節しながらスライブ操作を実行できる。

本実験に用いたシステム特性能以下のとおりである。

慣性質量：$I=2\text{ kg}$
ばね定数：$K_s=98\text{ N/m}$
比例ゲイン：$K_p=100$
積分ゲイン：$K_i=5000$
速度指令作成ゲイン：$K=0.1$
速度制御系の操作量飽和値：50 N
握力の不感帯：$F^{\text{饱和}}=1\text{ N}$
握力の飽和値：$F^{\text{饱和}}=6\text{ N}$
操作力の不感帯：$F^{\text{饱和}}=1\text{ N}$
補助操作力の飽和値：$F^{\text{饱和}}=10\text{ N}$
位置制御の比例ゲイン：$K_i=50$
サンプル周期：$T=0.05\text{ min}$

また本システムでは計算機の制御に基づく作業情報として次のような単純な5種類の作業情報が与えられている。

MOVE p: 位置pへ移動
PUSH f: 力fを発生
PICK : 対象物をつかむ
PLACE : 対象物を放す
END : 作業の終了

これらのコマンドを用いてあらかじめ作業プログラムを作成し、これを作業情報に基づいた計算機によるスライブ動作計画として計算機にスライブ操作を実行させる。ただしこれらの各コマンドが操作者が動作完了キーより押すことにより次の動作に移ることになっている。

4・2 操作者と計算機による共同操作 計算機の操作力によるスライブ先端の位置制御に操作者が介入する実験を行った。

4・2・1 握力による動作速度の調節 計算機の操作力によるスライブ動作の実行速度を操作者の握力によって調節する。スライブ先端部を初期位置$X_a=0\text{ m}$から

MOVE 1.0 m

のコマンド（計算機操作力）により目標位置まで移動させる場合、操作者がグリップに握力のみを与えることでスライブ動作速度を変化させ、その結果を図7に示す。このとき、操作者の介入による動作速度の変化が観察しやすいように、計算機操作力の飽和値を$F^{\text{饱和}}=2\text{ N}$としてスライブ動作を全体的に遅くしている。また図中、操作者の握力F_Gについては不感帯$F^{\text{饱和}}$を差し引いた値を示している。

図より操作者の握力の強さに応じてスライブ動作速度がアルゴリズムで調整されていることがわかる。すなわち握力F_Gに対して計算機操作力の優先度K_aが決定され、それに応じて計算機操作力F_aによる速度指令値が調節されていることがスライブ先端速度V_sのグラフに表れている。

4・2・2 位置制御における目標値補正 計算機の操作力によるスライブ先端の位置制御において、計算機内部の作業情報に基づいて決定された目標位置と実際必要な目標位置の間に誤差がある場合に、その差を操作者の介入により補償する。

いまスライブ先端部を初期位置$X_a=0\text{ m}$から

目標位置$X_a=0.75\text{ m}$

で静止させる作業において、作業を表すコマンドとし
て誤った目標位置が与えられた場合、その誤差を操作者がグリップ操作によって補正した。
次の二つの誤ったコマンドに対する補正の結果を図8に示す。
(a) MOVE 0.8 m (誤差: +0.05 m)
(b) MOVE 1.0 m (誤差: +0.25 m)
これらから目標位置誤差の大小にかかわらず操作者により目標位置が補正可能であることがわかる。
誤差が小さい場合には、真の目標位置以外で静止しそうなことを確認した後、適度な一定の操作力F_0を加え続けすることで補正を実現している。誤差が大きい場合には、誤った位置に移動しようとするスライド動作に対しみたん操作力を加えて補正を試み、それでは不十分と判断した時点でグリップを強く握り計算機の操作力を零にしてから手動でスライドを真の目標位置に持っていくことで補正を実現している。
4-2-3 未知障害物への接近動作 計算機内部の作業情報に基づいて決定された目標位置へのスライド軌道上に未知障害物がある場合、操作者の介入により未知障害物をリアルタイムに回避させる実験を行った。ここではスライド先端の位置制御の目標位置が未知障害物に非常に接近しており、同時に作業情報による目標位置にも誤差がある場合を対象とする。
X_s = 1.0 m で未知障害物に衝突する環境において、スライド先端を初期位置 X_s = 0 m から
目標位置 X_s = 0.95 m

図7 握力による動作速度調節

図8 位置制御における目標値補正

で静止させる作業について、計算機の操作として次の二つのコマンドのいずれかが実行されるとする。
(a) MOVE 0.95 m
(b) MOVE 1.50 m
(a) は作業情報として障害物が既知である場合、(b)
推力検出による操作補助付加形バイラテラルアーム制御

図 9 未知障害物への接近動作（MOVE 1.5 m）

は障害物が未知で高速で衝突する場合に相当する。操作者は(a), (b)どちらかが与えられたかを知らされずにグリップを操作して衝突を回避した。その結果を図9に示す。

スライド進路上の障害物が既知、未知にかかわらず、未知障害物周辺においても操作者の介入によって安全にスライド先端の位置制御を行えることがわかる。この場合操作者は、目標位置に近づいてもスライド速度が落ちないのをみて操作力にによって減速を試み、それでも速度が大きすぎるのをみて障害物から離れる方向に操作力をかけながらグリップを握って更に速度を落とし、スライド先端が逆に目標位置から離れ始めとこで操作力をそのまま一定に保ち、握力を微調整することで補助操作力と操作力を平衡させて目標位置をほぼ静止させている。

以上から、計算機の操作によるスライド先端の位置制御に操作者が自在に介入できることが確かめられた。

操作者がマスタに加えた操作力はいかなる時点においてもスライド動作に反映されるので、計算機に操作を任せていていともリアルタイムで操作者が思いどおりに介入できスライドを動かすことができ、また介入する度合いは操作者がマスタ操作を操作しながら同時にグリップの握りを変えることにより連続的に簡単に調節できる。

したがって、計算機による誤ったスライド動作が実行されても、操作者がリアルタイムで介入しその動作を正しい方向に修正することができる。

また、あらかじめ与えられた作業情報をもとにした計算機による操作に、人間による操作を付加することになり、計算機による簡単なコマンドでの高精度な制御と人間の熟練した適応性のある制御を融合した柔軟なマスタスライド操作が可能である。

5. おわりに

既知要素と未知要素の混在した環境下で行うマスタスライド遠隔作業において、従来の計算機による自律制御と操作者による自律制御の両モード切り換え方式では、操作者と計算機の操作分担を円滑に行いにくい。

そこで本論文では、バイラテラルマスタスライド系の操作に作業情報に基づいた計算機による操作補助を付加することにより、操作者の操作と計算機の操作を柔軟に結合した操作補助付加形バイラテラルマスタスライド方式を提案した。

本方式による計算機によるスライドアーム動作に操作者がリアルタイムで自在に介入でき、計算機と操作者の操作力の割合を操作者が握力を変えることにより簡単に連続して調整できる。またその機構も簡単なもので実現可能である。

したがって、操作者の熟練した適応性のある制御と計算機による簡単なコマンドでの自律性のある高精度な制御を同時に実現することができる。また本方式を用いることで、操作者の判断を即座に計算機によるスライドの自律制御に反映でき、作業情報が不完全な場合でも、操作者と計算機の間での合理的な操作分担により作業を円滑に行うことができる。

文献

(1) Burnett, J. R., Force-Reflecting Servos Add “Feel” to Remote Controls, Control Engineering, July (1957), 82.
(2) 高橋・若山、知識的オペレーションシステムの構成法とその要素技術、日本ロボット学会誌、2-6 (1984), 566.
(3) 新井、作業用ロボットの機構と制御に関する基礎研究、機械技術研究所報告、138 (1987), 42.
(4) 與・長谷、インピーダンス制御型マスタ・スレーブシステム、日本ロボット学会誌、8-3 (1990), 241.
(5) 横井・吉川、現在の制御技術への応用を考えるマスタ・スレーブ型マニピュレータのバイラテラル制御、計測自動制御学会論文集、27-1 (1991), 56.
(6) 平井・佐藤、言語介在型マスタ・スレーブ・マニピュレータシステム、計測自動制御学会論文集、20-1 (1984), 78.
(8) 長井・松島、操作型ミニ・マニピュレータ、計測自動制御

—149—
(9) 平井・佐藤、ロボットの知的遠隔操作、日本ロボット学会誌、4-6 (1986), 89.
(10) 山下・柿田・島司、遠隔操作支援に関するシミュレーション実験—基本システムの成形—、第6回国際自動制御学会九州支部講演会予稿集、(1987-11), 139.
(11) 山下・ほか4名、抵抗型アクチュエータによるロボットの制御方式、昭和62年度科学研究成果報告書、(1988).
(13) 井上・ほか5名、直交座標型マスタアームを使った多関節マニピュレータの6自由度ピラテル制御、日本ロボット学会誌、6-1 (1988), 75.
(14) 宮崎・遠藤、マスタ・スレープ・マニピュレータの並列制御方式、第3回日本ロボット学会講演予稿集、(1985-11), 219.