適応前輪操舵系による車両運動の制御

永井 正夫*1, 王 玉 清*2

Vehicle Motion Control by Adaptive Front Steering System

Masao NAGAI and Yuqing WANG

この論文は適応前輪操舵系を用いた車両運動制御について述べています。従来の操舵系では、車両の姿勢が車両の操縦性に大きく影響します。従来の操舵系では、これらのパラメータが変化するため、適応能力が低下するために、ドライバの負担が大きくなる場合があります。この論文では、適応前輪操舵系の有効性を検証するために、車両の姿勢を適応する方法を提案します。

Key Words: 車両運動制御, 車両の操縦性, 電子制御, 適応前輪操舵系

1 緒 言

車両の運動はドライバーによって操舵系を通じて行うことが必要で、操舵系が車両の姿勢に与える影響はきわめて大きい。操舵系の性能は車両自身のパラメータと環境パラメータ（例えば路面摩擦係数μなど）に影響される。従来の操舵系ではこれらのパラメータが変化した場合、適応能力がないのでドライバーの負担が大きくなり、極端な場合には大きな危険が起こる[1][2]。そこで、本論文では、車両の姿勢の向上とドライバーの負担を最小化するための操舵系のパラメータの最適化を目的とした車両のインテリジェント化のために、適応能力を持つ前輪操舵系を提案する。

適応操舵系に関する研究にはこれまでいくつかの論文が発表されているが[3][4][5]、それらの場合は視覚モデルの設計においてはいずれも車両のU/SまたはU/S特性を無視した場合でのモデルを採用しており、操舵系の特性を直接的に取り入れる方法は困難と考えられる。本論文では提案する適応操舵系は視覚モデルをベースとしてステア特性を特徴するとともにティミングファクトを考慮し、前輪の円運動時の不安定性の向上を図るものとする。そのため、通常運転でドライバーが重視すると言われているヨーレートに従加する適応操舵系と、緊急避難時に重視すると言われている速度に従加する適応操舵系を設計した。その設計方法は、伝達率の有無を考慮して適応的に操作するサーキューニング方式[6][7][8]である。この適応操舵系の有効性を検証するために、ドライバーの操作特性を考慮した円運動時の紧急避難時のモデルを提案し、ドライバーの操作特性を考慮した紧急避難時のモデルを検証した。

2 自動車モデル

2.1 連続系の車両モデル

車両前輪のステアリング機構の動特性やローリング運動及びタイヤの動特性を無視すると、車両のヨーレートと単方向からの平滑運動は、次のような状態方程式で表すことができる。

\[
\begin{bmatrix}
\dot{\theta} \\
\dot{\gamma}
\end{bmatrix} = \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix} \begin{bmatrix}
\theta \\
\gamma
\end{bmatrix} + \begin{bmatrix}
b_{11} \\
b_{22}
\end{bmatrix} \delta_m
\]

ただし、

\[a_{11} = -2(k_f + k_s)/(mv)\]
\[a_{12} = -1 - 2(l_fk_f - k_s)/(mv)\]
\[a_{21} = -2(\eta_fk_f - k_s)/I\]
\[a_{22} = -2(\eta_fk_f + k_s)/I\]
\[b_{11} = 2k_f/(mv)\]
\[b_{22} = 2l_fk_f/I\]

ここで、各変数及び係数の定義は以下の通りである。

m: 車両の質量；
l_f: 前車輪、後車輪から重心点位置までの距離；
k_f, k_s: 前車輪、後車輪のコーナリング・パワー；

* 平成3年9月3日D&Dシンポジウムにおいて講演、原稿受付 平成3年11月14日。
*1 正員、東京農工大学(〒184小金井市中町2-24-16)。
*2 学生員、東京農工大学大学院。
2.2 離散系の車両モデル

本研究では、計算時間を考慮した適切な制御設計手法を提案する。シミュレーションでは離散系の車両モデルを用いることにしている。離散系から連続系への変換は以下のようになっている。連続系のシステムである式(1)と式(8)あるいは式(9)を表現すると、一般に

\[z(k+1) = A_d z(k) + B_d u(k) \] (13)

\[y(k) = C_d z(k) \] (14)

ただし、

\[A_d = \exp[A_d T] \] (15)

\[B_d = \int_0^T \exp[A_d r] \, dr \, B_c \] (16)

\[C_d = C_i \] (17)

連続系の車両モデルの式(1)を上に述べた手法を使って、離散モデルに変換し、前輪横舵入力 \(u(k) \) に対するヨーレート及び積加速度の出力を \(z \) 変換したものは次のようになる。

ヨーレート:

\[\gamma(k) A_d (z^{-1}) = z^{-d} B_r (z^{-1}) u(k) \] (18)

積加速度:

\[\sigma(k) A_d (z^{-1}) = z^{-d} B_a (z^{-1}) u(k) \] (19)

ただし、 \(d \) (本論文では \(d=1 \)) は無数時間で:

\[A_d (z^{-1}) = 1 + a_1 z^{-1} + a_2 z^{-2} \] (20)

\[B_r (z^{-1}) = b_0 + b_1 z^{-1} \] (21)

\[B_a (z^{-1}) = b_0 z^{-1} + b_1 z^{-2} \] (22)

各係数は式(15)(16)(17)などの式から決まる。

3 適応横舵系の設計

3.1 環ご指定セパルチューニングコントローラの設計

まず、Fig.1に示すようにコントローラを設定すると、目標値 \(R(z^{-1}) \) は時間領域でのデータ列 \(r(i)(i=1,2,\ldots,n) \) を \(z \) 変換したものである。他の変数についても同様に対応する出力 \(Y(z^{-1}) \) は

\[Y(z^{-1}) = \frac{E(z^{-1}) z^{-d} B_c (z^{-1})}{(1-z^{-1}) D(z^{-1}) A_d (z^{-1}) + E(z^{-1}) z^{-d} B_c (z^{-1})} R(z^{-1}) \] (23)

となる。ここで開ループ系が漸近安定となるように、コントローラの多項式 \(D(z^{-1}), E(z^{-1}) \) を決定する。そのために

\[(1-z^{-1}) D(z^{-1}) A_d (z^{-1}) + E(z^{-1}) z^{-d} B_c (z^{-1}) = \bar{A}(z^{-1}) \] (24)

と分母の多項式を固定する。ここで右辺の \(\bar{A}(z^{-1}) \) は漸近安定な多項式である。

ここで、 \(D(z^{-1}), E(z^{-1}) \) を一般形で表現すると,

\[D(z^{-1}) = 1 + \alpha_1 z^{-1} + \alpha_2 z^{-2} + \cdots \] (25)

\[E(z^{-1}) = \epsilon_0 + \epsilon_1 z^{-1} + \epsilon_2 z^{-2} + \cdots \] (26)

具体的にコントローラの係数を求めるには、式(20),(21),(22)と式(25),(26)を式(24)に代入し、両辺の対応項を等しくして求ることができる。

![Fig.1. Block diagram of the self-tuning controller](image-url)
適応前輪操舵系による車両運動の制御

次にFig.1のブロック線図を委縮し、積分補償回路を
分離した等価なブロック線図をFig.2に示す。これから
定常外乱に対するオフセットを防ぐ効果があることが
わかる。なお図中の各補償回路のゲインは以下のよう
にして求められる。

Fig.2の特性多項式は式(24)と同様に

\[(1-z^{-1})(1+D_{n}(z^{-1}))A_{p}(z^{-1})+\]
\[Kz^{-1}B_{r}(z^{-1})B_{r}(z^{-1})\times z^{-1}B_{r}(z^{-1})\times z^{-1}B_{r}(z^{-1})\times z^{-1}B_{r}(z^{-1})=\] \(N\times M\times N\times N\times N\) (27)

と表すことができる。ここでは

\[H_{p}(z^{-1}) = h_{0} + h_{1}z^{-1} + h_{2}z^{-2} + \cdots\] (28)

式(24)と式(27)の左辺の対応項を等置すると、式(25),(26)

\[D_{n}(z^{-1}) = D(z^{-1})-1\]

\[= d_{1}z^{-1} + d_{2}z^{-2} + \cdots\] (29)

\[(1-z^{-1})H_{p}(z^{-1}) + K = E(z^{-1})\]

\[= e_{0} + e_{1}z^{-1} + e_{2}z^{-2} + \cdots\] (30)

となる。ここで式(30)に式(28)を代入し、左辺と右辺の
対応項を等置すると、下式より積分ゲイン \(K\)と補償回
路 \(H_{p}(z^{-1})\)の係数が計算できる。

\[
\begin{align*}
K &= e_{0} - h_{0} \\
h_{0} &= h_{1} - e_{1} \\
h_{1} &= h_{2} - e_{2} \\
&\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\vdots
\end{align*}
\] (31)

即ち、種指定で求めた \(d_{1}, d_{2}, \ldots, e_{0}, e_{1}, \ldots\) を使い、式(31)から \(h_{0}, h_{1}, \ldots\) までの順番で補償回路のゲインを求め

以上のようにして求められた補償回路による制御
入力 \(U(z^{-1})\) は下式により表される。

\[U(z^{-1}) = \frac{K}{(1-z^{-1})[\Omega(z^{-1}) + (1-z^{-1})]} \] (32)

ただし、 \[
\Omega(z^{-1}) = A_{p}(z^{-1}) + A_{p}(z^{-1})B_{r}(z^{-1}) + H_{p}(z^{-1})z^{-1}B_{r}(z^{-1})
\] (33)

3.2 未知パラメータの同定則

前節の3.1では制御対象である車両のパラメータが
既知であるとして定して、補償回路の各係数が求められ
ることを示した。ここでは制御対象のパラメータが未
知として、オンラインでパラメータを同定する方法を
説明する。

Fig.2. Equivalent system with compensation circuit

車両の各パラメータから構成されるベクトルを \(\theta\) と
し、 \(k\) 時点におけるパラメータの同定値を \(\hat{\theta}(k)\) とする。
本論文では時変する未知係数 \(\lambda(k)\) のみを用いる最小自乗法
のパラメータ同定則を採用する [8]。

\[
\hat{\theta}(k) = \hat{\theta}(k-1) + \gamma(k)[y(k)\hat{y}(k)]\] (34)

\[
\gamma(k) = y(k) - \hat{y}(k)\]

\[
y(k) = y(k) - \gamma(k)[y(k)\hat{y}(k)]\] (35)

ただし、上式で \(\Gamma(k)\) は

\[
\Gamma(k) = \frac{\Theta(k-1)}{1 + \gamma(k)[y(k)\hat{y}(k)]} \] (36)

\[\Phi(k) = [I - \Gamma(k)[y(k)\hat{y}(k)]]\lambda(k)\] (37)

\[
\lambda(k) = \left\{ \begin{array}{ll}
1 - \gamma(k)[y(k)\hat{y}(k)] & (\lambda(k) \geq \lambda_{\max}) \\
\lambda_{\min} & (\lambda(k) < \lambda_{\min})
\end{array} \right. \] (38)

ここで、 \(\gamma(k)\) は同定誤差で、 \(\hat{y}(k)\) は \(k\) 時点で定義
したパラメータ \(\hat{\theta}(k-1)\) を用いて求めた車両の出力 \(y(k)\) の
予測値である。 \(\hat{\theta}(k)\) は車両の入出力の過去のデータか
ら構成される入出力ベクトルである。 \(\theta(k), \gamma(k)\) の具
体的な構成は次項3.3で述べる。 \(\Gamma(k), \Phi(k)\) は正の重み
マトリクスで、 \(I\) は単位行列である。 \(\lambda\) は Fortescue, T. R.
らによって導入された定数である。 \(\gamma\) の選び方は [8]
を参照されたい。

また、同定の初期値としては、 \(\theta(0) = 0\) と \(C = 800\) を採用し、パラメータの
初期値 \(\theta(0)\) は適当な値を与えればよい。

3.3 適応制御系の挙動

3.3.1 3.2で述べた設計法にもとづいた適応制御
系をFig.3に示す。

（A） 適応制御系の設定 本論文では、規範制御と
言うのは理想的な環境系を含むドライブで最適な操作
感覚を与えるような時不变なパラメータを持つ車両系
という。規範車両の具体的な数値例としてはTable 1の
パラメータをもつ、ニュートラルステア特性を有する車
両系とおく \((SF = 0.0)\)。

\[
SF = \frac{m[k_{l}(k_{l} - l_{f})]}{k_{f}, l_{d}}
\] (39)
適応前輪操舵系による車両運動の制御

Table 1. Main parameters of the model vehicle system

<table>
<thead>
<tr>
<th>Mass</th>
<th>m</th>
<th>k</th>
<th>14300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moment of inertia</td>
<td>I</td>
<td>kgm²</td>
<td>1.75 x 10⁵</td>
</tr>
<tr>
<td>Wheel base</td>
<td>l</td>
<td>m</td>
<td>6.6</td>
</tr>
<tr>
<td>Center of gravity</td>
<td>l / h</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Gear ratio</td>
<td>i</td>
<td></td>
<td>21.8</td>
</tr>
<tr>
<td>Front wheel cornering power</td>
<td>k_f</td>
<td>N/rad</td>
<td>1.4 x 10⁵</td>
</tr>
<tr>
<td>Rear wheel cornering power</td>
<td>k_r</td>
<td>N/rad</td>
<td>2.8 x 10⁵</td>
</tr>
</tbody>
</table>

(44)

ここで、A_m(z⁻¹) は式(20)と同形で Table 1 のパラメータをもっている。この場合、A_m(z⁻¹) は周辺安定であることは簡単に確かめられる。

4 シミュレーション結果

4.1 関ループ系のシミュレーション

本論文では、まず適応操舵系の効果を検討するため、ドライバがフィードバック制御をしない開ループ系のシミュレーションを行った。以下に 2 種類の適応操舵系の結果について示す。

（A） ヨーレート追従適応操舵系 アンダーステア特性を持つ実車両が低速から一定加速度 0.2G で加速しながら旋回半径 75m の円旋回をする時のシミュレーション結果をFig.4 に示す。

Fig.4-(1) はヨーレートの応答で、図から分かるように、適応操舵系が無い場合の車両のヨーレートは、速度の増加と共に規範車両のそれよりだんだん小さくなってゆく。これは、車両が速度の増加に従って幾何学的回転を大きくする結果、適応操舵系が付与された車両では、ヨーレートの応答は規範車両のそれとほぼ重なっており、ドライバの運転感覚はニュートラルステア特性の車両を運転するのと同じとなる。Fig.4-(2) は車両の横滑り角の応答である。適応操舵系が付与された場合や横滑り角が大きくなり、これはFig.4-(3) に示すように前輪の実際角が速度の増加と共に大きく成長することと対応している。Fig.4-(4) は横滑り速度の応答の一例である。この場合の制御則はヨーレート追従であるが、横滑り角の変化が小さいので（即ち b0 ≈ 0）の結果としては横滑り速度も規範車両の横滑り速度に追跡することになる[14]Fig.4-(5) はこの場合の車両の車速コースであることから分かるように制御された場合の車両は速度一定で円旋回できる。

また、ここには示していないが、オーバーステア特性の実車両の場合でも同様の制御効果が得られた。

次にニュートラルステア特性の実車両が一定速度 80km/h で半径 75m の円旋回時に車軸から最高速力を受ける時のシミュレーション結果をFig.5 に示す。道路における前後のタイヤのコーナリングパワーと走行速度の関係は次式で与えられる[14]。
ここで、ρは路面摩擦係数などに関係する係数である。使用した数値は前輪において$\rho = 1030$（単位：$N\cdot h/rad\cdot Km$）、後輪において$\rho = 1470$、前後輪ともに$v = 12Km/h$とした。

Fig.5-(1)は湿路に入った時のヨーレートの応答である。適応制御系の無い車両のヨーレートはだいぶ小さくなり、車両が元の半径よりかなり大きく回転してしまう。一方適応制御系が付与された車両のヨーレートはほぼ規範車両のそれに同じく、一定のヨーレートを保つことができる。これはドライバが路面の状態がはっきり判断できなくても適応制御系の適応操作により、車両が元の半径を保って走ることができるということを意味する。車両の慣性角は前輪の実装角が大きくなるために適応制御系の無い車両より大きくなっている。

Fig.5-(4)はこの場合の横加速度の応答である。車両が湿路に入った時、慣性角が一定に大きいので、規範モデルのそれより大きくなる。時間の経過につれ、$\beta \to 0$となるので、横加速度も規範車両の値に収束する。Fig.5-(5)はこの場合の車両の走行コースである。因から分かるように制御した場合は車両がほぼ一定の半径で円周回できる。

Fig.4 Simulation results of an under-steer vehicle
when circling with acceleration
(Yaw rate following adaptive control)

Fig.5 Simulation of a neutral-steer vehicle
running from dry road to wet road
(Yaw rate following adaptive control)
（B） 構加速度過従適応操舵系 次に構加速度を重視する場合の構加速度過従適応操舵系の効果を検討するため、本節の（A）と同じ条件で円弧回時に乾燥から湿路に進入する時のシミュレーション結果をFig.6に示す。Fig.6とFig.5の比較から分かる様に、この場合は適応操舵系が本作始めるとすぐに、構加速度が過従するが、構滑り角は構規車両のそれよりずれて立。定常状態になるとヨーレートも構規車両の値に収束する。Fig.6-(5)はこの場合の車両の走行コースである。ヨーレート過従適応操舵系の場合と違って制御した場合でも実際の走行コースは目標コースの内側にずれている。これは湿路に進入直後に御レートが一旦大きく内側で車両が回るこことに対応している。

4.2 閉ループ系のシミュレーション

適応操舵系の効果を検討するため、Fig.7に示すドライバーの操舵特性を含む開ループ系のシミュレーションを行いその結果をFig.8に示す。シミュレーションの条件はFig.5と同様で、ヨーレート過従適応制御の場合である。ドライバーモデルは前方観点一次予測モデルとし、外乱がなければ目標コースである円に沿って走行する。

Fig.8-(1)は前輪の実験角を表している。点線で表しているのは適応操舵系がない場合の前輪実験角で、実線で表しているのは適応操舵系が付与された場合の前輪実験角である。適応操舵系のない場合の前輪実験角はすべてドライバの操舵によるものであるが、適応操舵系が付与された場合
には、ドライバの操縦による分と破綻で表している分だけである。実線と破綻の差は適応制御系によって自動調節されたものである。したがって、点線と破綻との差がドライバの負担の減少になり、適応制御の効果として表れている。

また、Fig.8(2)は車両が目標コースに追従する様子であるが、適応制御系が付与される場合には外側に大きくはみ出さないことなくコースへ良く追従できることがわかる。

4.3 適応制御の収束性

提案した適応制御手法の効果が上述のシミュレーションにおいて確認できたが、その際のパラメータの同定の様子をFig.9に示す。この計算結果は、Fig.5で示した仮定的に急激に路面摩擦係数が低下した場合である。他の場合も同様の結果が得られており、真値に収束している。ただしFig.9で、b_0、b_1はそれぞれ真値b_0、b_1の同定値である。この同定過程においては、摩擦係数の低下にともなうパラメータの急激な変化に従い、旋回速度力とタイヤのコーナリングフォースの不均衡がほぼステップ状に発生する。従ってあらかじめパラメータの値を適当に設定することが前提となっている。

なお本シミュレーションでは演算速度とアクチュエータの遅れ時間分を考慮して、サンプル周期を50msecと設定している。

5 結言

本研究で円環回中に乾路から湿路へ突入するような危険時の操縦安定の向上を目的として、コーナー速度制御流れに適応制御系と横加速度制御の適応制御系を設計した。制御系の設計に際しては、車両のパラメータを未知として同定法を用い、シミュレーションによりその有効性を調べた結果、以下の効果があることが確かめられた。

1）両制御系とも車両の応答は規範モデルによる従来系と比較して向上する。

2）湿路に於ける解析により、制御性能は大幅に改善される。

以上の効果は、車両が旋回中に路面摩擦係数の変化といった予期せぬ異常時に、車両が自律的にドライバーの運転を補助する役割をもつことを意味し、事故予防につながるものと期待される。

参考文献

