Estimate of Antistatic Plastic used as Gear Material

Naohisa TSUKAMOTO, Hiroki MARUYAMA, Hiroshi MIMURA and Yooichi EBATA

Antistatic plastic is one of the functional plastics which have been developed recently, but their characteristics when they are used as machine parts have not yet been elucidated. Consequently, various problems have occurred in their practical use. Therefore, in this study, gears were made of two kinds of antistatic plastics which were compounded by filling a conductible agent into matrixes of nylon (MC nylon) and polyacetal (copolymer), which are typical engineering plastics, and operation tests were conducted. The characteristics of the wear of teeth, the change of tooth profile and so on were examined, and the practicality of these plastics as gear materials was evaluated.

Key Words: Machine Element, Tribology, Wear, Gear, Plastic Gear, Nylon Gear, Polyacetal Gear, Antistatic Gear

1. 緒 言

最近プラスチックは、その機能性が活用され、用途が急速に拡大している。例えば、歯車では、炭素繊維を充てんした高強度プラスチック歯車、高分子樹脂を充てんした低騒音、低摩擦プラスチック歯車あるいは金具装置、事務機器、音響機器などにおいて多量に使用されており、それぞれの製品において重要な役割を果たしている。

しかしながら、プラスチック歯車には利点が多い反面欠点も多い。その欠点の一つに接触を繰返していると（連続運転を行うと）、歯車に静電気が帯電し、電気のノイズの発生、微粉ゴミの付着などの帯電損失を誘発し、センサ装置においてはその機能を阻害される事例もある。

このことから樹脂メーカーにおいては、帯電防止用プラスチックを開発するための研究を進めており、各種のプラスチックが生産されているが、これらを歯車をはじめとする機械部品に使用した場合の諸特性についてはほとんど明らかにされていない。そのため、この種のプラスチックはかなり多く実用化されているが、同時にいろいろな問題も発生している。

そこで本研究では代表的なエンジニアリングプラスチックであるナイロンとポリアセタールをそれぞれ母材として、それに導電剤を充てんし複合化した2種類の帯電防止プラスチックで歯車を製作し、各種条件下で運転試験を行い、歯の摩耗、歯面温度、歯形の変化などの諸特性を調べた、またこれを一般のナイロン歯車やポリアセタール歯車のそれと比較し、帯電防止プラスチックの歯車材としての実用性を評価した。

2. 実験装置および実験方法

2-1 使用プラスチック 実験にはナイロン（MCナイロン）の母材に導電性炭素微粒子を10％（重量比）未満で充てんしたナイロン10以下Beと呼ぶ）とポリアセタールの母材に導電性炭素微粒子を10％（重量比）程度で充てんしたポリアセタール10（以下Upと呼ぶ）を用いた。表1にこれらの主な特性をナイロンおよびポリアセタールのそれと対比させて示している。Be、Upはともに体積抵抗率がナイロン、ポリアセタールより著しく減少しているが、同時に強度も低下していることがわかる。例えば曲げ強さではBeサイズナイロンの約
94%。Upはポリアセタールの約78%である。

2-2 試験歯車 実験には再現性を確認する意味でBe, Upともに表2に示すI形とII形の2種類の歯車を用いた。図1は両歯車の形状と主な寸法を示したものである。Be, Upともに円軸に成形後ホブ切りを行っている。駆動・被動ともに同種のプラスチック歯車対で、パッッラッはBe歯車、Up歯車ともに0.075モジュール付けた。各歯車の精度はJIS B1702の4級で、歯面粗さはJIS B6061の10点平均粗さ(Ra)で6〜7μmである。

2-3 歯車試験機 実験には既に報告した中心距離50mmの動力循環式歯車試験機を用いた。

2-4 測定項目および測定方法 実験では駆動と被動の各プラスチック歯車の歯の摩耗、歯形の変化、歯面粗さを既報と同じ方法で測定した。また歯面温度は図2に示すようにビッチ点より1mm歯側に寄った歯幅中央の位置で表面温度計を接触させて測定することにしたが、I形歯車においてはその位置はかなり不正確になった。なお歯面温度は赤外線放射温度計でも確認をしている。

表1 実験に用いたプラスチックの主な特性

<table>
<thead>
<tr>
<th>Items</th>
<th>Units</th>
<th>MC nylon</th>
<th>Be</th>
<th>Polyacetal</th>
<th>Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting point</td>
<td>°C</td>
<td>208</td>
<td>208</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td>Specific gravity</td>
<td></td>
<td>1.16</td>
<td>1.18</td>
<td>1.41</td>
<td>1.43</td>
</tr>
<tr>
<td>Rockwell hardness</td>
<td>HRN</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>75</td>
</tr>
<tr>
<td>Coefficient of linear expansion</td>
<td>K^-1</td>
<td>8 x 10^-5</td>
<td>9 x 10^-5</td>
<td>13 x 10^-5</td>
<td>13 x 10^-5</td>
</tr>
<tr>
<td>Volume resistivity</td>
<td>Ω cm</td>
<td>10^14</td>
<td>10^5</td>
<td>10^8</td>
<td>10^10</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>MPa (kgf/cm²)</td>
<td>72.52</td>
<td>66.64</td>
<td>60.27</td>
<td>45.08</td>
</tr>
<tr>
<td>(470)</td>
<td>(680)</td>
<td>(615)</td>
<td>(460)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bending strength</td>
<td>MPa (kgf/cm²)</td>
<td>109.76</td>
<td>102.90</td>
<td>90.20</td>
<td>68.60</td>
</tr>
<tr>
<td>(1120)</td>
<td>(1050)</td>
<td>(900)</td>
<td>(700)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elongation</td>
<td>%</td>
<td>50</td>
<td>20</td>
<td>65</td>
<td>7</td>
</tr>
<tr>
<td>Young's modulus</td>
<td>GPa (kgf/mm²)</td>
<td>2.84</td>
<td>3.41</td>
<td>2.57</td>
<td>2.45</td>
</tr>
<tr>
<td></td>
<td>(290)</td>
<td>(348)</td>
<td>(262)</td>
<td>(250)</td>
<td></td>
</tr>
</tbody>
</table>

表2 実験に用いた歯車の主な仕様

<table>
<thead>
<tr>
<th>Type</th>
<th>gear</th>
<th>Driving gear</th>
<th>Driven gear</th>
<th>Driving gear</th>
<th>Driven gear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module</td>
<td>1.25</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Standard pressure angle</td>
<td>20°</td>
<td>20°</td>
<td>20°</td>
<td>20°</td>
<td></td>
</tr>
<tr>
<td>Number of teeth</td>
<td>30</td>
<td>50</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Addendum modification coefficient</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Diameter of standard pitch circle</td>
<td>37.5</td>
<td>62.5</td>
<td>40</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Clearance coefficient</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Face width</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Center distance</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Teeth finishing</td>
<td>Hobbing</td>
<td>Hobbing</td>
<td>Hobbing</td>
<td>Hobbing</td>
<td></td>
</tr>
</tbody>
</table>

N.B. A unit of length is mm.

図1 使用歯車の形状と寸法
図2 齒面温度の測定位置
2.5 実験条件 Be歯車、Up歯車はともに表3のようにI形歯車、II形歯車のそれぞれにおいて回転数（駆動側）を3種類、トルク（駆動側）を2種類変え実験を行った。本実験は短時間で歯が折損せずに長時間運転を継続することを目的としているため、比較的小トルクで運転を行っているが、産業界からの要求によりポリアセタール系帯電防止歯車の許容負荷能の目安を紧急に調べた必要があったので、Up歯車においては0.65 Nmの大きなトルクについても運転を行った。

トルク0.206 Nm、0.323 Nm、0.65 Nmで運転した場合の歯元曲げ応力はそれぞれI形歯車では3.7 MPa（0.38 kgf/mm²）、5.9 MPa（0.6 kgf/mm²）、11.8 MPa（1.2 kgf/mm²）、II形歯車では2.4 MPa（0.25 kgf/mm²）、3.8 MPa（0.39 kgf/mm²）、7.5 MPa（0.77 kgf/mm²）となる。

回転数500 rpm、1 000 rpm、1 400 rpmで運転した場合の歯（歯形上）の平均滑り速度はそれぞれI形では0.132 m/s、0.264 m/s、0.369 m/s、II形では0.207 m/s、0.411 m/s、0.537 m/sとなる。

本実験はすべて無潤滑運転で、実験中の室温は多くの場合22〜24℃であった。

3. 実験結果および考察

3.1 運転寿命 表4に本実験（運転試験）の結果を示す。表中の損傷とはすべて駆動歯車の歯の折損（き裂の発生）を指しており、被動歯車においては歯の折損は皆無であった。表4のようにI-U-C-C群以外はすべて総回転数（積算回転数）Nr=10⁷まで無折損で運転でき、その後の運転も継続可能であった。

表3で示したように本実験においてはBe歯車の歯元の曲げ応力は5.9 MPaであり、この値は著者が実験を行った結果から得ているナイロン歯車の許容曲げ応力αs=16.7 MPa(1.7 kgf/mm²)の約35%の値であることから、Nr=10⁷まで運転しても折損しないことはある程度予測できていた。

Up歯車の折損は図3に写真を示したようにポリアセタール歯車と同じく歯元の折損であり、αs=7.5 MPaでは無折損、αs=11.8 MPaでは折損することが本実験からわかった（寿命は運転中にストロボスコープをあてて目視できる最小のき裂を発見したときにとした）。そこでこの両歯元応力の間でI形およびII形Up歯車を1 000 rpmで数回追加運転してみた。その結果、αs=8.82 MPaでNr=10⁷まで折損せずに運転が可能であることがわかった。Up歯車の許容応力値の目安は著者が実験を行った結果から得ているポリアセタール歯車の許容曲げ応力αs=13.2 MPa(1.35 kgf/mm²)の約65%と思ってよいようであった。なお、後に示すようにプラスチック歯車は摩耗が多いため、摩耗の基準は使用目的によって異なるため、ここでは摩耗寿命を除いている。

3.2 歯の摩耗 図4、5はBe歯車およびUp歯車の摩耗を示す。（摩耗量/回転数）/（歯数×2モジュール×幅×総回転数）Wnとし、PV条件（歯車相当ヘルツ応力（各プラスチック歯車同士のかみあいを鋼歯車同士のかみあいにみなしして算出した接触応力）Mn、V：歯形上の平均滑り速度）値との関係を示したものである。

両図のようにBe歯車およびUp歯車のWnはPV値に相関し、PV値が大きくなるほどその量は増加し、図3 Up歯車の歯の完全折損（I-U-C-C群）（Nr=3.76×10⁷で目視できるき裂を発見し寿命とし、さらにNr=7.416×10⁷まで運転を継続し、歯の完全折損の状態を確認した）
ている。これはナイロン歯車およびポリアセタール歯車の場合と同じである。よってこのことから推察すると、Be歯車およびUp歯車の摩耗は基本的にはナイロン歯車およびポリアセタール歯車とほぼ同じような現象を示すようにと思われる。ここで運転初期の $N_T = 10^5$ 時を除き、図4、5のようにばらつきを無視して各 N_T 時の W_p に実線を引き、また同様にばらつきはあるが、既に報告したようにナイロン歯車およびポリアセタール歯車の W_p に破線を引いて、これを図4、5の各図に転記して実線と破線を比較してみると、いずれの N_T 時においても破線より実線のほうが W_p が少なくなっていることがわかる。ばらつきの範囲内であると解釈できるところもあるが、全体的な傾向としてはBe歯車およびUp歯車のほうがそれぞれナイロン歯車およびポリアセタール歯車よりも摩耗が少ないといえる。

上記の結果から考えると、BeおよびUpに充てんされている炭素微粒子に潤滑効果があると思えるが、このことについては現時点では確かかな知見を得ていな

図4 Be歯車の摩耗量

図5 Up歯車の摩耗量
3-3 歯形変化 Be歯およびUp歯の歯形変化の特徴として図7、8に示した歯車の実験結果の一例を示す。これらの図は基礎円板方式の歯形測定機で測定した歯形の記録線図で、各歯の線図間が歯の摩耗厚さ（深さ）を表している。

Be歯車はその負荷能力の35%程度の負荷で運転しているため、図7のようにNT=10^7時においても摩耗は浅く、歯厚があまり減少していない。また摩耗は比較的歯形上均一で、歯形の凹凸が少ない。

一方Up歯車はBe歯車とは対照的に、図8にみるように摩耗は深く（図8におけるTnが大きい）、特に

![図6](image)

図6 備に付着した微粉ゴミ

![図7](image)

図7 Be歯車の歯形の変化例 (II-Be-B-2)

![図8](image)

図8 Up歯車の歯形の変化例 (II-Up-B-2)

![図9](image)

図9 Be歯車およびUp歯車の歯面の上昇温度
の歯面の上昇温度に引いた破線を転記したものである。

図9においてBe歯車とナイロン歯車、Up歯車とポリアセタール歯車をそれぞれ比較すると、Be歯車の被動では差がないが、ほかの場合ではBe歯車およびUp歯車はともにばらつきを考慮してもそれぞれナイロン歯車およびポリアセタール歯車よりも上昇温度は高くなっていることがわかる。プラスチック歯車は多くの場合摩耗が多いと摩擦損失エネルギーが摩耗に費やされ、歯面温度が上昇しないことは既に実験で確認している。本実験ではBe歯車およびUp歯車の歯面の上昇温度は若干ながらナイロン歯車およびポリアセタール歯車よりも高くなっており、これも前述のようにBe歯車およびUp歯車の摩耗がナイロン歯車およびポリアセタール歯車よりも少なかったことによるものと思われる。

3・5歯面粗さ 図10に運転時に伴うBe歯車およびUp歯車の歯面粗さの変化の一例を示す。両歯車のホブ切りした粗さは6〜7μmであったが、運転経時に伴って減少し、Nt=6×106時では2μm弱になっている。Be歯車は実験終了時のNt=107でもその粗さに変化は見られないが、Up歯車はNt=107時にはNt=6×106時よりも若干ながらさらに粗さは小さくなった。

運転経時に伴うプラスチック歯車の歯面粗さの変化は相手歯車の材質や運転条件によって異なるが、プラスチック歯車同士の組合せで無潤滑運動であれば、多くの場合Nt=107時で2μm近傍以下になる。

なお図11に参考のためにUp歯車の歯面の顕微鏡写真を示す（撮影位置は歯面温度測定位置近傍）。

図10 運転経時に伴うBe歯車およびUp歯車の歯面粗さの変化（IIーBeーBー2, IIーUpーBー2）

図11 Up歯車の歯面の顕微鏡写真（IIーUpーCー3）

4. 結 言

代表的なエンジニアリングプラスチックであるナイロンとポリアセタールをそれぞれ母材にした帯電防止用プラスチックBe, Upの歯車材としての評価をまとめ次のようなになる。

（1）Up歯車の歯の折損はポリアセタール歯車と同じく歯元の曲げ折損で、その許容応力はポリアセタール歯車の約65%であった。なお小トルクで運転したBe歯車においては折損は皆無であった。

（2）Be歯車, Up歯車はナイロン歯車およびポリアセタール歯車よりも、大差ではないが、それぞれ摩耗は少なかった。

（3）小トルクで運転したBe歯車においては、歯形変化がほとんど見られなかったが、Up歯車の歯形変化はポリアセタール歯車と同じ変化形態を示すことがわかった。

（4）Be歯車, Up歯車の歯面温度は、ナイロン歯車およびポリアセタール歯車よりも若干若干高かった。

（5）Be歯車, Up歯車の歯面粗さはNt=107時でRz≤2μmであった。

文 献

（1）公開特許公報（A） 昭64-29428（1989），263。
（2）三菱ガス化学（株），ユピテル技術資料，（1991），8。
（3）塚本ほか2名，機論，56-527，C（1990），1906。
（4）塚本，機論，46-409，C（1980），1116。
（5）塚本，機論，No, 800-15（1980-8），55。
（6）中田，石川，歯車伝動，（1966），47，誠文堂新光社。
（7）塚本ほか2名，機論，57-533，C（1991），230。
（8）塚本ほか3名，機論，57-543，C（1991），3626。