Friction-Assisted Extrusion of Aluminium Thin Strips from Pure Aluminium Powder

Tamotsu NAKAMURA, Masashi HIRAIWA, Haruki IMAIZUMI and Yasuji TOMIZAWA

The friction-assisted extrusion of thin strips developed by the authors was applied to a powder-forming from pure aluminium powder. The thin strips of 0.05-2 mm in thickness could be cold-formed directly from the aluminium powder with a considerably low punch pressure ratio \(p/2k = 0.9-1.2 \) (\(p \): punch pressure, \(k \): yield shear stress), which agreed with the theoretical value estimated by an upper bound method. The thin strips formed from the aluminium powder have superior mechanical properties to the strips formed from aluminium blocks, such as Vickers hardness \(HV = 60-90 \), ultimate tensile strength \(S_T = 220-320 \) MPa, total elongation \(\varepsilon_T = 4-5\% \) and so on.

Key Words: Plastic Forming, Tribology, Friction-Assisted Extrusion, Thin Metal Strip, Aluminium Powder, Powder Forming, Mechanical Properties

1. 結論

金属等の粉末成形において、成形体の密度を高め、製品強度や寸法精度の向上を図るため、圧密・焼結後の熱間塑性加工（焼結鍛造等）、あるいは静水圧成形（CIP, HIP）が行われる。また、粉末素材を金型容器に詰め、直接熱間塑性加工を行うことも試みられている[1]。これらの方法はいずれも熱間圧延状態の成形であるが、冷間圧延や粉末成形に高圧力下で、極めて大きな塑性変形を与え、粉末粒子の大きな塑性変形あるいは粉末粒子間の相対移動や相対すべりを生じさせることにより、粉末成形体の密度や粉末粒子の接触力を顕著に高めることができると考えられる[2]。さらに、このような粉末成形体を均一化することにより、粉末粒子間の拡散接合をいっそう助長することができると言われる。また、複合粉末素材から、直接冷間で塑性成形することにより、複合複合材料の製造の可能性が期待される。

本研究では、著者らが開発した薄板の摩擦押し出し成形法[3]を利用して、粉末素材から各種複合材料の製造法の可能性を探るため、一種のモデル粉末素材として、工業用純アルミニウム粉末素材から薄板を冷間で直接成形する方法について検討した。その結果、厚さ約 50 \(\mu \)m までの薄板の成形が実現でき、その強度特性等は、溶製材の摩擦押し出しによる薄板と同等以上になることが明らかになったので、ここに報告する。

2. 形成原理

図1は摩擦押し出しにより粉末素材から薄板を直接成形する方法の原理を示す。粉末素材1をコンテナ5 中に充てんし、パンチ4により加圧・圧密する。所定のパンチ面圧を負荷した状態で、アンビル2を横押しラムにより水平に駆動すると、アンビル工具面の摩擦力により素材はダイス3の間隔を通過し、薄板1aが形成される。パンチによる圧密だけでは十分な高密度化や高強度化は達成されないが、摩擦押し出しでは、アンビル面近傍における高圧面下での厳しいせん断変形により、粉末粒子の大きな塑性変形と粉末粒子間の相対移動が生じ、その結果粉末成形体の高密度化と粉末粒子間の強固な接合が生じ、高強度特性が得られるものと期待される。
3. 実験方法

粉末素材からの薄板の摩擦押し出し成形装置は、ブロック素材からの成形の場合と全く同じで、多軸動油圧プレスにセットされている。表1に実験条件を示す。コンテナは超硬合金（V 4）製の型枠で、横断面寸法は10×10 mmである。ダイス出口寸法は幅10 mmで、開けきりh=0.55 〜2 mmまでとし、押し出し比をR=5 〜200の間で6段階に変更した。アングルは超硬合金（V 4）製で、供試面の表面粗さはR_{max}=0.2 μm、R_a=0.047 μmである。アングルの傾き速度は約0.1 mm/s、最大移動行程は40 mmとした。パンチ荷重F_p、アングル荷重F_αおよびコンテナクランプ荷重F_nを押出し行程中連続測定した。なお、コンテナクランプ荷重P_nはアングルに直接加わらないように、ダイアルで受ける構造となっている。

供試素材粉末としては表2に示す工業用純アルミニウムのアトマイズ粉末Al-100（平均粒径100〜200μm）を用いた。このアルミニウム粉末の真密度はρ₀=2.699 g/cm³で、粉末充てん量は、真密度体積で10×10×5 mm³になるように重量測定した。圧成時には、ダイス出口に簡単なふたをして成形した。

本実験では市販で入手可能なアルミニウムアトマイズ粉末のできるだけ小さな平均粒径のものを用いたが、これより大きい平均粒径の粉末素材でも同様に成形可能と考えられる。一方、数μm程度のアルミニウム粉末の製造はかなり困難であるが、微粉粉末材からの成形については、別の機会に検討を試みたい。

アンビル工具面の冷却効果を実現しやすくするため、この面は補助がしたが、コンテナ内面およびパンチ面はステアリン酸亜鉛粉末で潤滑した。アングルねじ面は二硫化モリブデン乾燥皮膜潤滑したが、比較のためマシン油潤滑の場合についても検討した。

成形品の密度測定は含油前後の空気中および水中重量から求めた。引張試験は、各厚さの製品（幅10 mm、長さ40 mm）から標準部割り約8 mm、平行部幅約8 mmの小引張試験片を切り出して行った。硬度は、マイクロビッカース硬度試験（荷重25 g）により測定した。

4. 成形条件に関する検討

図2 は、コンテナでパンチ面圧を変更して圧成した素材の相対密度ρ/ρ₀の変化を示す圧密曲線である。

<table>
<thead>
<tr>
<th>Table 1 実験条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Die</td>
</tr>
<tr>
<td>Anvil</td>
</tr>
</tbody>
</table>

(b) 成形条件

Cross section of container: 10×10 mm²
Extruded thickness: 2, 1, 0.5, 0.25, 0.1, 0.05 mm
Extrusion ratio: 5, 10, 20, 40, 100, 200
Anvil velocity: about 0.1 mm/s
Anvil stroke: about 40 mm
Lubricant of container: Zinc stearate
Lubrication condition of anvil surface: Dry

図1 粉末素材からの薄板の摩擦押し出し成形法の原理

図2 アルミニウム粉末の圧密成形における相対密度とパンチ面圧の関係
コンテナ内面はステアリン酸亜鉛で潤滑した。パンチ面圧が約0.4 GPaまでに相対密度は顕著に上昇し、それ以上ではほぼ一定の値97～98%を示す。

図3はパンチ面圧pを変更して摩擦押出し成形を行った場合の相対製品長さLp/Lnの変化の一例（押出し比R=40）を示す。パンチ面圧が、p=0.2～0.5 GPaの範囲ではLp/Ln=1であるが、それ以上の面圧ではLp/Ln=11以上になり、摩擦押出しに通常の押出し変形が重畳して生ずることがわかる。表面クラック等が

適正な試料は図中の黒塗りの記号で示すような面圧範囲p=0.3～0.4 GPaで成形可能となった。

図4は粉末摩擦押出し成形が可能となる上限と下限の相対面圧p/2kを挿出し比Rに対して示したものである。ここで、素材のせん断降伏応力kの値として

は、後出の図8または図9における硬さHVまたは

引張強さSrの値からk=160 MPaを仮定した。実験

は摩擦押出し成形の上界法による理論曲線である。丸印で示すように、粉末素材の摩擦押出し成形でも下限の相対面圧は固着摩擦の條件m*1=1の理論曲線とほぼ一致している。この結果は別報19の溶製材からの摩

擦押出しの場合と同じで、粉末素材からの摩擦押出し

でも変形特性は溶製材と同様に取扱うことが可能であると考えられる。

図5は挿出し比R=40の場合のアンビル荷重Pb

に及ぼすパンチ面圧pと挿出面圧滑の影響を示したものである。アンビル面圧を二硫化モリブデン滑

とした場合のほうがアンビル荷重の増加が低く

なり、摩擦抵抗が低く有利になることがわかる。パンチ面圧p=0に外挿したアンビル荷重Pbは、挿出面の摩

擦抵抗が零になったときのアンビル荷重すなわちアン

ビル工具面と粉末素材界面の摩擦抵抗を表す。

このp=0のときのアンビル荷重Pbから摩擦せん

断応力τを求める、挿出し比Rに対して示すと、図6

のようになる。挿出し比の増加に伴いτは52から

105 MPa程度まで増加する。これらの値は、後出の図

8あるいは図9の硬さあるいは引張強さから周囲を

するせん断降伏応力k=160 MPaより低い値となっている。

5. 製品強度特性

図7の丸印はアルミニウム粉末素材の摩擦押出し成

形後の相対密度ρ/ρ0と挿出し比Rの関係を示したも

のである。また、図中の四角印は図2の圧密曲線にお

いて各挿出し比のパンチ面圧に対応する相対密度を求

めて示したものである。挿出し比R=5～20では、摩
アルミニウム粉末の摩擦押出しによる薄板の成形法の開発

摩擦押出し成形によりさらに密度増加が生じているのが、
$R=40$ 以上では、ほとんど変化がないことがわかる。

粉末摩擦押出し成形品のビッカース硬度 HV の分布を測定した結果、先端付近約5 mm 以内ではやや低
い値を示したが、それ以外はほぼ一定値を示し
た。そこで、その平均値 HV を押し出し比 R に対して示
すと、図8のようになる。丸印で示す冷間成形のままの
場合、R の増加に伴い HV は60から90程度まで顕著
に増加している。図中に一点鋼線で示す溶製材からの
製品の硬度比に比較して、全体的に HV は約10程度
高くなっている。三角印は粉末摩擦押出し成形後、
400℃・2h の熱処理を施した場合の硬度 HV を示す、
熱処理により硬さ HV は約35から53程度まで低下
しているが、溶製材の工業用純アルミニウムの完全焼
なまし材の硬度 $HV=20〜25$ に比べてまだかなり高
い値となっている。

図9に粉末押出し成形品の引張強さ S_r と押し出し比
R の関係を示す。押し出し比 $R=5$ の場合には、コンテ
ナ内に充てんできる粉末素材の量が不足し、製品長さ
が15 mm 程度しか得られなかったため、引張試験を
行っていない。黒塗りの記号で示すように、粉末素材
から冷間成形したままの成形品でも、引張強さは S_r
=220〜320 MPa となり、一点鋼線で示す溶製材から
冷間成形した場合より、20〜50 MPa 程度も高い値を示している。白抜きの記号は、400℃・2h の熱
処理を施した場合であり、$R=20$ 以上で $S_r=120〜130$ MPa 程度の値をとる。溶製材を完全に焼なまし
た状態では、通常 $S_r=100$ MPa の値をとると考えら
れるため、粉末成形品のほうが焼なまし状態でも、20
MPa 程度高い S_r の値をとることがわかる。押し出し比
小さいとき、引張強さが減少する傾向にあつ、これ
は塑性変形が少なくなり、加工硬化が少なくなるた
めと、粉末粒同士の接合が不十分になるためと考えら
れる。

図10に全体と e_r と押し出し比 R の関係を示す。黒塗
りの記号で示すように、粉末素材から冷間成形したま
まの場合でも $e_r=4〜5\%$ となり、一点鋼線で示す溶
製材の場合に比較して，$R=20$ 以上ではかえって大きな値となっている。白抜きの記号で示すように，400°C×2h の熱処理を施した場合には，$e_r=5\sim10\%$ 程度まで延性が増加することがわかる。

以上の項目に，硬化，引張強さおよび伸び等の強度特性は，粉末からの成形品のほうが溶製材からの成形品より優れていることがわかった。これは，粉末表面の酸化膜の破壊埋込みによる分散強化のためとも考えられるが，その機構については，今後さらに調査を進めるたい。

6. 寸法および表面品質

図11は製品外観写真の例を示す。$R=20$ (板厚 0.5mm) の場合には，組型上部へのバリが生じているが，押出し先端部を除いてかなり平坦な製品形状が得られている。$R=200$ (板厚 0.08mm) の場合には，押出し先端部で割れが生じ，ダイス側へカールした状態となっている。先端部の割れは押出し初期の非定常変形によるものと考えられる。ダイス側へのカールはダイス出口付近でのモーメントの作用と，アンビルからの離型時の変形によるものと考えられる。

図12は粉末摩擦押出し成形品の先端からの位置 x に対する厚さ h の分布の一例を示す。一点錐線は各押出し比 R に対するダイス出口の設定間隙を示す。$R=200$ の場合にはダイス出口寸法より 20～30μm 程度大きな厚さが示されているが，それ以外の押出し比では設定間隙より 10μm 程度大きな厚さのばらつき範囲に納まっている。この厚さ分布とそのばらつきの程度は別報の溶製材からの摩擦押出し成形品とほぼ同等である。

図13に粉末摩擦押出し成形品のアンビル側表面の中心線上平均粗さ R_a の分布を示す。押出し比 $R=10$ の場合を除くと，$R_a=0.1\sim0.25\mu m$ 程度の範囲に納まっている。アンビル基面の表面粗さ $R_a=0.047\mu m$ に比べてやや大きいが，溶製材からの成形品の場合とほぼ同等である。一方，ダイス側の表面性状は，ダイス出口角による摩擦が生じやすいため，アンビル面側に比べて表面粗さはやや大きく，$R_a=1\sim3\mu m$ となっ
粉末摩擦押し出し成形の先端からの位置に対する中央線平均粗さの分布

図 13 粉末摩擦押し出し成形品の先端からの位置に対する中心線平均粗さの分布

たが、本実験では、400℃・2 h の熱処理を施した場合、圧密成形時に封入された空気が膨張し、破断状の表面となったため、今後は圧密の脱気処理等の対策が必要になると考えられる。

7. 結論

工業用純アルミニウム粉末を素材とした摩擦押し出し成形により、厚さ h=0.05～2 mm (押出し比 R=5 ～200) の薄板製品を冷間で直接成形することが可能になった。それらの粉末成形品の強度特性を溶製材からの成形品と比較した結果、次のような結論が得られ

た。

（1）粉末素材の摩擦押し出し成形が可能となる下限の相対パンチ表面厚さ 2h/2k は 0.9～1.2 程度となり、溶製材からの摩擦押し出し成形の場合と同様に、上界法による理論値とは一致することが明らかになった。

（2）粉末摩擦押し出し成形品の強度特性は、冷却成形のままで、ビッカース硬度 HV=60～90 程度、引張強さ S_t=220～320 MPa 程度、および全伸び ε_t=4～5%程度となり、溶製材からの成形品と同等以上の優れた特性を示すことがわかった。

（3）粉末摩擦押し出し成形品の寸法精度と表面粗さは溶製材からの成形品とはほぼ同程度になることがわかった。

以上の結果は、純アルミニウム粉末を一種のモデル素材として用いた結果であるが、本成形法をさらに発展させることにより、各種混合粉末素材あるいは複合材料薄板の製造の可能性が期待される。

本研究の遂行にあたり、科学研究費補助金・一般研究(B)および天田金属加工機構技術振興財団・研究開発助成の援助をいただいた。また、日本鋼管(株)・田島秀紀氏には粉末成形技術等でお世話になった。記して謝意を表する。

文献

(1) 例えば、中川、西山記念講演テキスト 鉄鋼の粉末冶金技術の進歩、(1982)、149、日本鉄鋼協会。

(2) 松本・野藤・宇田、昭和 63 年春塑加工論文、(1988-5)、159。

(3) 中村・平岩・富沢・機論、59-557、C(1993)、193。