Establishment of Optimum Grinding Conditions Utilizing the Fuzzy Regression Model

Gun-hoi KIM and Ichiro INASAKI

This paper describes an expert system for grinding operations in order to establish the optimum grinding conditions, which satisfy the maximum removal rates, considering the constraints of grinding power, workpiece burn, chatter vibration, and surface roughness. Specialized knowledge of the grinding operations is acquired from the actual operation database. Coefficients in the experimental equations are obtained through the fuzzy regression model based on fuzzy set theory, and are stored in the actual operation database. The developed system is capable of determining the optimum grinding conditions, taking into account some problems, and practical examples of implementation are described.

Key Words: Grinding Expert System, Optimum Grinding Condition, Fuzzy Regression Model, Fuzzy Grade, Actual Operation Database

1. 論文の概要

研削加工は高品質、高精度な加工を達成する上で有効な加工法である。しかし、要求される加工仕様を満たすような条件の設定と研削中に発生するトラブルの対策を行うことは非常に難しい。なぜなら、研削加工プロセスは多数のパラメータによって構成されている上、各パラメータの影響が定量的に十分には明らかにされていないためである。従って、現場では熟練者の経験や技能に大きく依存しているのが実状である。

1970年以降、最適研削条件の設定に関する問題を定量的に解決する試みがいくつか実施されてきた。しかし、これらの研削条件の設定に利用するデータの取り扱いが主であるため、研削加工のようにデータに標準偏差が大きい場合に実際の条件設定にあたって、問題が残る。このような問題には、ファジー集合に基づくファジー回帰モデルを用い、標準偏差の大きい研削データと研削加工システムの相関をファジー集合として取り扱うことによって、ある程度対応できると考えられることもできる。

本研究では、係数プランジ研削を対象とし、要求される加工精度の達成とトラブルの回避を含め、ユーザが最適研削条件の設定が可能な研削加工用エキスパートシステムをエンジニアリングワークステーション上に開発した。その中で、説明的知識を定量的に解析することを可能とするため、実加工データベースを構築した。このデータベースは、ファジー回帰モデルを基本としており、ユーザの意志決定に一定の自由度を持たせるようにしたものである。本報では、特に実加工データベースの構成と条件設定の手続きについて述べる。

2. 実加工データベースの構成

数多くの情報提供機能を持つ加工データファイル作成においては、単純な研削条件の設定が可能となる。しかし、このような目的に対して従来の回帰分析は必ずしも有効できない。なぜなら、研削加工データの標準偏差が大きいため、各パラメータの相互関係も複雑な場合が多いからである。

従って、本システムでは、研削プロセスの機械性と標準偏差の大きい研削データに対応させるためにファジー回帰モデルを適用し、求められた定数と係数を実加工データベースに蓄積し、利用するように設計した。

2.1 実加工データベースの構成

実加工データベースには、研削試験より得られたデータを研削条件によって細かく分類し、フレーム知識として格納した。例えば図1のように、研削条件フレームと研削条件設定に要する各知識フレームとの関係を図示した関連フレーム（Related class）とエンティティフレーム（Entity class）によって、研削データを管理するようにした。

研削条件フレーム（Grinding condition）のクラスは粗研削条件（Rough grinding）と精研削条件（Fine grinding）のサブクラスに分類されている。その後に工作物周速度、切り
ファジィ回帰モデルによる最適研削条件の設定

2.2 ファジィ回帰モデルの導入

ファジィ回帰モデルでは、暖昧さを持つ定数と係数によって入出力データの関係づけが可能で、条件設定に幅を持たせることができる。このため、使用者がデータの依頼性を考慮に入れる条件設定が可能となる。

本研究では、ファジィ回帰モデルを用いて、得られた入出力データの暖昧さを反映した定数と係数を持つファジィ線形回帰モデルを求め、実加工データベンチマークデータとして利用することとした。

ファジィ線形回帰モデルでは、線形モデルと実際のデータとの不整合性を線形関数の定数と係数の暖昧さに依存しているとみなしている。すなわち、ファジィ線形関数を

\[Y_i = A_0 + A_1 x_{i1} + \cdots + A_n x_{in} \]

と表したときに、\(A_i \) は定数を意味し、\(A \) は対称なファジィ（\(a, c \)）の係数を意味する。定数と係数\(A \) はファジィ数であり、そのメンバーシップ関数を定義することが必要となる。

\[\mu_{A_i}(a_i) = \max \left\{ 1 - |a_i - a| / c_i, 0 \right\} \]

\[i = 0, 1, \ldots, n \]

となる。\(c_i = 0 \) のときは、ファジィ定数と係数\(A_i \) は通常の係数\(a_i, c_i \) と一致する。ここで、ファジィ定数と係数\(A_i \) を \(A_i = (a_i, c_i) \) とする。\(a_i \) はファジィ定数と係数\(A_i \) の値を表し、\(c_i \) は幅を表す。

ファジィ線形回帰モデルの決定は、ファジィモデルの暖昧さを表す定数と係数の幅を、ある拘束条件下のもとに最小化するファジィ定数と係数\(A = (a, c) \) を求めることが推奨される。すなわち、ファジィグレード\(k \) が与えられ

\[\min S = C_k + \cdots + C_n \]

\[y_i = a_i x_{i1} + (1 - k) c_i \]

\[y_i = -a_i x_{i1} + (1 - k) c_i \]

\[c_i \geq 0, i = 0, \ldots, N; i = 0, \ldots, M \]

と表現される。ここで、\(y_i \) は推定データの従属変数、\(x_i \) は独立変数であり、\(t \) は軸を表す。

2.3 ファジィグレードについて

ファジィグレード\(k \) は評価関数（式3）と拘束条件（式4）に影響を及ぼす。すなわち、\(k \) の設定（\(0 \leq k < 1 \)）によって加工条件が大きく異なる。図4はファジィグレードと推定区間S（式5）との関係を表したものである。ファジィグレード\(k \) が低いレベルではファジィ回帰モデルの推定区間Sは小さいが、\(k \) が大きくなると推定区間は指数関

図2 ファジィ回帰モデルによって求めた仕上げ面粗糙さの回帰式

図2は加工物の寸法0.16m/sに対してファジィ回帰モデルによって求めた仕上げ面粗糙さの回帰式である。図2のように、加工物の寸法と切れ込み深さの定数と係数の中心値と幅を求めて加工条件設定に利用する。

図3は通常の回帰分析とファジィ回帰モデルとの推定区間を比較したものである。独立変数の中央値を\(a, b, c \) とし、従属変数の標準偏差\(\sigma \) を0.15として、正規乱数を発せ、データ数（自由度）\(n \) は60までランダムデータを作って数値計算に用いたものである。図3の(a)は通常の回帰分析で仮想値をt分布によって求めたものであり、(b)はファジィ線形回帰モデルによって求めた推定区間である。図3の回帰分析では、推定値において独立変数の区間値に関わらず、同じ幅の推定値とする。また、図中のA,B部分のようにデータが重なる。

しかしファジィ回帰モデルは、大きな標準偏差のあるデータに対しても効率よく対応できるばかりではなく、A,B部分のような離れたデータも考慮される。

— 281 —
ファジィ回帰モデルによる最適研削条件の設定

数的に大きくなる。図中の\(\alpha \) はファジィ回帰モデルの推定区間の中心値であり、\(S_k \) はファジィグレード \(k = 0 \) であるときの推定区間の幅を表す。

図3 通常回帰モデルとファジー回帰モデルの推定区間比較

このようにファジィグレードによって設定される研削条件が大きく左右されるので、\(k \) の設定においては、データの質とデータの数を考慮しなければならない。

図4 ファジィグレードが設定区間 \(S \) に及ぼす影響

図5はファジー回帰モデルを使用する際に使われるファジィグレード \(k \) の設定値を求めるため、データの数とデータの質（標準偏差の大きさ）に対するシミュレーションを行なったものである。シミュレーション方法は図3の場合と同じ方法で、データの数（自由度） \(n \) = 5, 10, 20, 40, 60 に対して求めたものである。図5のように標準偏差（\(\sigma_{\text{max}} \)）によって推定区間の増加率、データの標準偏差とデータの数によって異なる、標準偏差（\(\sigma_{\text{max}} \)）が1.2以下、1.2以上1.5、1.5以上によって推定区間幅の増加率が大きく異なる。なお、データ数によってもファジー回帰モデルによって求めた推定区間の幅が異なる。従って、設定される研削条件は図4で説明したようにファジーグレード \(k \) によって大きく左右されるので、条件設定に当たってはデータの質（標準偏差）と数を考慮しなければならない。これらを考慮してファジーグレード \(k \) の設定値を通常の95%信頼区間で当てはまるような推定区間に比較してまとめたのが図6である。

図5 データ数及び標準偏差と推定区間の関係

図6に示したようにファジーグレードの設定値は、通常は \(k = 0.55 \) 以下で十分であり、標準偏差（\(\sigma_{\text{max}} \)）が1.2以下ならばファジーグレード \(k = 0 \) が0.55、標準偏差（\(\sigma_{\text{max}} \)）が1.2以上1.5の範囲ならばファジーグレード \(k = 0 \) が0.5、標準偏差（\(\sigma_{\text{max}} \)）が1.5以上ならばファジーグレード \(k = 0 \) が0.2が目安となる。そしてデータ数が50個以上ならばデータの質には関わらず、\(k = 0 \) としても準確ではないと思われる。

なお、本研究で対象とした研削加工条件範囲での粗さデータの標準偏差も本シミュレーションで用いた0.5～2.4以内であることを確認した。

図6 データ数及び標準偏差とファジーグレードの推定値

---282---
3. 最適研削条件の設定方法

本研究では、加工物材質、要求仕上面粗さが与えられたときに、研削焼きおよびびびりを回避するという拘束条件の下、仕上げ面粗さを満足しながら、加工能率を最大にすると仮定した結果、条件および各過程での取り扱いの設定を支援するシステムの構築を行った。

最適研削条件の初期設定は実加工データベースより行なわれる。最適条件設定の流れは図7のように、まず実加工データベース(AODB)を探索し、要求される前件部がマッチングすれば、それらの条件を取り出して設定する。

動力で加工を実行するのが望ましい。研削作業条件の中、砥石石とドレッシング条件が決定されていると仮定し、加工条件のパラメータのみを決定する場合を考える。砥石周速度を一定であるとした場合、単位幅当たりの研削力Pは一般に

\[P_r = A_{op} \cdot V_w^{A_{op}} \cdot h^{A_{op}} \]

\[A_{op} = (a_{op}, c_{op}) \]

と表せる。式(5)を対数の形に書き直して、ファジィ線形回帰モデルで表すと

\[\log P_r = A'_{op} + B_{op} \log V_w + C_{op} \log h \]

\[A'_{op} = \log A_{op} \]

となる。ここで、\(V_w \)は工作物周速度、\(h \)は切込み深さであり、\(A_{op} \)は研削力変数をファジィ回帰モデルで表現する際の定数と係数を表し、\(a_{op}, c_{op} \)はその中心値と幅を表す。

仕上げ面粗さに関する研究(5)～(6)は古くから数多く行われているが、本研究での仕上げ面粗さモデルは、同様に次式を用いた。

\[\log R_{rms} = B_{op} + C_{op} \log V_w + C_{op} \log h \]

\[B_{op} = \log B_{op} \]

となる。ここで、\(B_{op} \)はファジィ回帰モデルの定数と係数を表し、\(a_{op}, c_{op} \)はその中心値と幅を表す。

図7 最適研削条件の設定流れ

しかし、前件部とのマッチングができない場合には、既存知識ベース(GKB)を用いて条件の設定をする。既存知識ベースは、条件設定に当たって必要となる知識を論文と専門書より獲得し、本システムで定義された送信関数によって当該フレームにメッセージを送るという手続き型のLISP関数とルール知識の形でフレームとして組み込まれているデータベースである。本システムの手続き関数の形式は、

(send 当該フレーム名 メソッド名 メッセージ)

となる。

最適研削条件の設定に用いるファジィ回帰モデルでは、拘束条件を線形化しなければならない。従って、使用されるデータを対数化してファジィ回帰モデルを作り、その定数と係数を加工条件の設定に利用することにした。

3.1 拘束条件モデル 研削動力モデルは、研削動力にそれぞれ許容最大動力の制限があり、拘束条件の内で加工作業を行なわなければならない。特に、粗研削においては、加工能率を最大にするため、許容最大

一方、加工能率を最大化するためには、要求される仕上げ面粗さを満足する粗比曲線上の加工条件の中で、\(h \)と\(V_w \)をできるだけ大きな値に設定する必要がある。円筒ブランジ研削において、仕上面粗さ一定になる加工条件(切込み深さと工作物周速度)をモデル式(7)を用いて求
ファジー回帰モデルによる最適研削条件の設定

3.2 取り代の設定

研削時間は粗研削工程と精研削工程の取り代の配分によって大きく左右される。本システムでは、与えられた総取り代の中で、研削時間を短くするためには粗研削工程の取り代をできるだけ大きく設定し、精研削工程では、求められた仕上げ面粗さを満足するような取り代で加工するようにした。従って、与えられた要求仕上面粗さをR_{max}（U）、精研削工程の切込み深さをh_u、粗研削での取り代をR_u、精研削での取り代をR_r、与えられた工件の半径をR、目標とする工件の仕上げ半径をR_uとする次のような各工程での取り代の設定が可能となる。

\[R_{max}(U) \leq h_u \text{の場合,} \]
\[R_u = R_{max} - R_r \cdot \text{……… (13)} \]
\[R_r = h_u \]
\[R_{max}(U) > h_u \text{の場合,} \]
\[R_u = R_{max} - R_r \cdot \text{……… (15)} \]
\[R_r = 0 \cdot \text{……… (16)} \]

3.3 最適研削条件の設定方法

実加工データベースを用いて最適研削条件を設定するためには、3.1節の拘束条件をファジー回帰モデルで計算し、その変数を求めてなければならないが、本検討は条件設定用に拘束条件の変数を示したものである。

表1 ファジー回帰モデルによって求めた拘束条件の変数と係数

| Experimental Conditions: |
| Wheel=MA6021M/B, Workpiece=SU22 |
| Wheel velocity, V_h=41.6m/s |
| Dressing lead, f_d=0.2mm/rev |
| Dressing depth of cut, t_f=0.02mm |
| Wheel width, B=38mm; Lubricant: Soluble type |

<table>
<thead>
<tr>
<th>Grinding power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Condition:</td>
</tr>
<tr>
<td>Wheel=MA6021M/B, Workpiece=SU22</td>
</tr>
<tr>
<td>Wheel velocity, V_h=41.6m/s</td>
</tr>
<tr>
<td>Dressing lead, f_d=0.2mm/rev</td>
</tr>
<tr>
<td>Dressing depth of cut, t_f=0.02mm</td>
</tr>
<tr>
<td>Wheel width, B=38mm; Lubricant: Soluble type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cutting power (kW)</th>
<th>Center Width</th>
<th>Center Width</th>
<th>Center Width</th>
<th>Center Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.38</td>
<td>0.10</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>0.3</td>
<td>0.48</td>
<td>0.76</td>
<td>0.02</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface roughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Condition:</td>
</tr>
<tr>
<td>Wheel=MA6021M/B, Workpiece=SU22</td>
</tr>
<tr>
<td>Wheel velocity, V_h=41.6m/s</td>
</tr>
<tr>
<td>Dressing lead, f_d=0.2mm/rev</td>
</tr>
<tr>
<td>Dressing depth of cut, t_f=0.02mm</td>
</tr>
<tr>
<td>Wheel width, B=38mm; Lubricant: Soluble type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cutting power (kW)</th>
<th>Dib</th>
<th>Dib</th>
<th>Dib</th>
<th>Dib</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.78</td>
<td>0.40</td>
<td>0.14</td>
<td>0.01</td>
</tr>
<tr>
<td>0.3</td>
<td>0.64</td>
<td>0.02</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grinding temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Condition:</td>
</tr>
<tr>
<td>Wheel=MA6021M/B, Workpiece=SU22</td>
</tr>
<tr>
<td>Wheel velocity, V_h=41.6m/s</td>
</tr>
<tr>
<td>Dressing lead, f_d=0.2mm/rev</td>
</tr>
<tr>
<td>Dressing depth of cut, t_f=0.02mm</td>
</tr>
<tr>
<td>Wheel width, B=38mm; Lubricant: Soluble type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cutting power (kW)</th>
<th>Dib</th>
<th>Dib</th>
<th>Dib</th>
<th>Dib</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.29</td>
<td>0.37</td>
<td>0.07</td>
<td>0.11</td>
</tr>
<tr>
<td>0.3</td>
<td>1.65</td>
<td>0.13</td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chatter vibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Condition:</td>
</tr>
<tr>
<td>Wheel=MA6021M/B, Workpiece=SU22</td>
</tr>
<tr>
<td>Wheel velocity, V_h=41.6m/s</td>
</tr>
<tr>
<td>Dressing lead, f_d=0.2mm/rev</td>
</tr>
<tr>
<td>Dressing depth of cut, t_f=0.02mm</td>
</tr>
<tr>
<td>Wheel width, B=38mm; Lubricant: Soluble type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cutting power (kW)</th>
<th>Dib</th>
<th>Dib</th>
<th>Dib</th>
<th>Dib</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.23</td>
<td>0.39</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>0.3</td>
<td>0.46</td>
<td>0.06</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

\[\theta_n = 2.4 \times 10^{-7} \frac{R_u}{k} \cdot \frac{V_u}{B} \cdot \frac{V_u}{k} \cdot \frac{t}{k} \quad \text{……… (8)} \]

\[\frac{h}{h_u} \geq \frac{k}{n} \quad \text{……… (9)} \]

\[\log \theta_n = D_n \log V_u + D_m \log h \quad \text{……… (10)} \]

\[V_u = K \cdot C_n \cdot C_m \cdot V_u \cdot \left(\frac{C_n + a_m \cdot R}{R_m - V_u} \right) \quad \text{……… (11)} \]

\[\log B = E_m \cdot \log V_u + \log E_m \quad \text{……… (12)} \]

\[\frac{R_{max}(U) \leq h_u \text{の場合,}} \]
\[R_u = R_{max} - R_r \cdot \text{……… (13)} \]
\[R_r = h_u \]
\[R_{max}(U) > h_u \text{の場合,}} \]
\[R_u = R_{max} - R_r \cdot \text{……… (15)} \]
\[R_r = 0 \cdot \text{……… (16)} \]

\[\theta_n = 2.4 \times 10^{-7} \frac{R_u}{k} \cdot \frac{V_u}{B} \cdot \frac{V_u}{k} \cdot \frac{t}{k} \quad \text{……… (8)} \]

\[\frac{h}{h_u} \geq \frac{k}{n} \quad \text{……… (9)} \]

\[\log \theta_n = D_n \log V_u + D_m \log h \quad \text{……… (10)} \]

\[V_u = K \cdot C_n \cdot C_m \cdot V_u \cdot \left(\frac{C_n + a_m \cdot R}{R_m - V_u} \right) \quad \text{……… (11)} \]

\[\log B = E_m \cdot \log V_u + \log E_m \quad \text{……… (12)} \]

\[\text{を表し,} \quad a_m, \quad c_m \text{はその中心値と幅を表す。} \]

\[\frac{R_{max}(U) \leq h_u \text{の場合,}} \]
\[R_u = R_{max} - R_r \cdot \text{……… (13)} \]
\[R_r = h_u \]
\[\frac{R_{max}(U) > h_u \text{の場合,}} \]
\[R_u = R_{max} - R_r \cdot \text{……… (15)} \]
\[R_r = 0 \cdot \text{……… (16)} \]
表2 最適研削条件の設定方法

<table>
<thead>
<tr>
<th>グリINDucer Wheel=WA60IrV; Werkpiece=SUJ2</th>
<th>Dressing lead, f=0.2mm/rev</th>
<th>Dressing depth of cut, t=0.02mm</th>
<th>Lubricant:Solubie type</th>
<th>Wheel width, B=38mm</th>
<th>Permissible maximum power=3.7kW; Burning temperature, θ=500°C</th>
<th>Required surface roughness=5μm; Fuzzy grade, k=0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective; Maximize[Material removal rate; Z=B · Vw · h/(mm² mm⁻¹)] h:Depth of cut (μm/rev), Vw:Werkpiece velocity (m/s)</td>
<td>Rough grinding</td>
<td>0.44logh+0.1logVw=50.4</td>
<td>Fine grinding</td>
<td>0.41logb+0.16logVw=20.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confidence limit for surface roughness</td>
<td>0.83logb+0.5 logVw=50.6</td>
<td>0.42logb+0.49logVw=20.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>0.42logb+0.49logVw=20.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chatter vibration</td>
<td>logb=1.94logVw=52.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper depth of cut</td>
<td>logb=1.94logVw=52.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface roughness</td>
<td>logb=1.94logVw=52.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図9は、要求された仕上面のさを満足しながら加工能率を最大にする精研削条件の切り込み深さと工作物周速度の探索結果を示したものである。例えば、要求仕上面のさが5μmならば、図9のBGHが研削条件設定の可能領域となる。その中で仕上げ面のさを満足しながら加工能率を最大にするhとVwを探索した結果、初期精研削の最適条件として5μm（k=0.5の場合）、すなわち、工作物周速度Vw=0.14m/s、切り込み深さh=2.1μm/revが設定される。表2は図9に示した要求仕上面のさが5μmであるときに、条件設定をシンプルネック法で求める際に示したものである。

4. ファジー・グレードを考慮した条件設定例

図10において、加工能率を最大にする粗研削条件の設定で、ファジー・グレードをk=0とすると、加工能率は高くなる研削条件Bk(Vw=0.45m/s, h=7.9μm/rev)に設定される。しかし、設定に対する信頼度は低め。反面、k=0.5とすると加工能率が高まる研削条件Bk(Vw=0.36m/s, h=6.4μm/rev)となるが、設定に対する信頼度は高くなる。例えばデータの標準偏差、σmaxが1.2以下でデータの数、nが10回以下であれば、図6でファジー・グレードk=0.5であるから、最適粗研削条件Bkとなり、σminが1.5以上でnが20回以下であれば、ファジー・グレードk=0でB0が設定される。
ファジィ回帰モデルによる最適研削条件の設定

図11は粗研削条件と精研削条件を提案したモデルにより設定した例である。図11に示したように加工能率はファジィグレードkによって大きく異なる。

なお、表3は図11に示した同一の条件でファジィ回帰モデルと通常回帰法によって求められた加工条件と加工能率の差を示したものである。加工条件を設定する場合、得られたデータの数と質（標準偏差）を考慮する。今回用いたデータの数（自由度）は18～30、標準偏差は1.21～2.39であるため、2.3節で提案した図6のファジィグレードを目安とすると、k=0.2となる。ファジィグレードから設定される加工条件は適当なデータを満たすように考慮するため、従来の回帰モデルの信頼区間95％との比較になる。従って、ファジィ回帰モデルのファジィグレードk=0.2で設定された加工能率と比較すると、ファジィ回帰モデルによって設定された加工能率の方が20～35%程度高いことになる。しかし、この差はデータの質（標準偏差）によって異なる。

このようなシステムは、ファジィグレードの導入によってユーザがデータの信頼度を考慮して研削条件の設定を行なえる条件設定方法となっている。

表3 ファジィ回帰モデルと通常回帰法によって求められた加工能率の差

<table>
<thead>
<tr>
<th>条件</th>
<th>標準偏差</th>
<th>信頼度</th>
<th>信頼区間</th>
</tr>
</thead>
<tbody>
<tr>
<td>粗研削 (k=0.1)</td>
<td>7.90,453.56</td>
<td>1.00,160.46</td>
<td>2.90,160.46</td>
</tr>
<tr>
<td>精研削 (k=0.1)</td>
<td>7.14,435.30</td>
<td>2.50,140.2</td>
<td>2.00,130.2</td>
</tr>
<tr>
<td>粗研削 (k=0.2)</td>
<td>6.40,363.20</td>
<td>2.10,140.38</td>
<td>1.90,120.33</td>
</tr>
<tr>
<td>精研削 (k=0.2)</td>
<td>6.40,363.20</td>
<td>2.10,140.38</td>
<td>1.90,120.33</td>
</tr>
<tr>
<td>精研削 (k=0.5)</td>
<td>6.40,363.20</td>
<td>2.10,140.38</td>
<td>1.90,120.33</td>
</tr>
</tbody>
</table>

5. 結論

本研究では、研削加工用エキスパートシステムの一部分として最適研削条件設定を行うための実加工データベースを設計した。

（1）研削加工システムの発展と研削データのばらつきを考慮し、ファジィ回帰モデルによるデータの収納方法を考案した。

（2）材料除去能率を最大とする最適研削条件を設定するための、トラブルの回避を含めた条件探索方法を可能にした。

（3）ファジィグレードの導入により、ユーザがデータの信頼度を考慮して研削条件の設定を行なえるようになったのが本システムの特徴である。

参考文献

（1）J.Peters，ほか2名，The Proper Selection of Grinding Conditions in Cylindrical Plunge Grinding，CIRP Annals，（1976），pp.387-393

（6）中山・M.C.Shaw，研削仕上げ面あらさに関する研究，日本機械学会(C)，Vol.37，No.293，（1971），pp.178-183

（8）松井，研削仕上げ面あらさに関する一考察，精密機械，Vol.41，No.6，（1975），pp.572-577

（9）小野，研削仕上げ面，（1962），p.104，機械学会

（10）河村・ほか2名，研削仕上げの基礎的研究，精密機械，Vol.45，No.1，（1979），pp.83-88

（11）稲崎・ほか3名，円筒ブランシュ研削におけるびびり発生限界，精密機械，Vol.46，No.2，（1980），pp.201-206