ハイポイドギヤの熱処理変形に関する研究*（熱処理変形の検出とそれを見込んだ歯切法の提案）
川崎一正*, 田村 久司*

Heat-Treatment Distortion of Hypoid Gears
(Detection of Heat-Treatment Distortion and Proposal of Corrective Gear Cutting Method)
Kazumasa KAWASAKI and Hisashi TAMURA

In this paper, a corrective gear cutting method is proposed to compensate the errors resulting from heat treatment. The heat-treatment distortion of hypoid gears is detected and treated as included in the error with gear cutting. The coordinates of many points on the heat-treated gear tooth surface are measured using a coordinate measuring machine. A theoretical gear tooth surface expressed as a function of the machine settings on a Gleason hypoid generator is estimated by the method of least squares so that the surface can fit the data of coordinate measurements. The errors caused by the heat treatment are taken as included in the deviations of the estimated machine settings from the designed settings. The corrective cutting method was proved to be valid because the dimension of the gear surface after heat treatment lay in close proximity to that of the designed surface.

Key Words: Measurement, Gear, Heat Treatment, Hypoid Gear, Heat-Treatment Distortion, Method of Least Squares, Machine Setting Error, Gleason Hypoid Generator, Coordinate Measuring Machine

1. 緒 言

ハイポイドギヤは歯切り後に、熱処理を行い適当な硬度に使用される[3]。しかし、熱処理したハイポイドギヤは熱処理変形が生じ、かみあわせたとき片寄った歯当たりとなったり、異常な騒音が発生することも多い。このような熱処理変形に対処するため、現在、歯車のオフセットや組立距離をわずかに変えて歯当たりを歯面の端から端まで移動させたVH試験[3]を行い、熱処理前後のVH試験値を熱処理変形と関係づけ、それを参考にして修正歯切りをしている。この方法は現実に即した簡便な方法であると考えられるが、現場技能者が歯当たりを確かめつつ歯切りを行うことになるため、精度を兼ねた現場技術に依存していることになる。そこで、この点に不満が残る。

ところで、ハイポイドギヤを歯切りするとき工具を決められた位置・姿勢に取付けるが、普通その取付けには誤差を伴う。既報[1]では、ハイポイドギヤの歯面上の多数点の座標を三次元座標測定機で測定し、その測定値群から歯切りの際の工具取付誤差を検出する方法を示した。その後、その方法によって工具取付誤差を検出し、その誤差を修正して歯切りを行った結果、設計どおりのハイポイドギヤ歯面を得ることができた。

本研究は、ハイポイドギヤの熱処理変形を歯切り時の工具取付誤差に含めて取り扱うことができるものとみなして検出すれば、熱処理変形を見込んだ歯切りが可能になるであろうと考え、この考え方に有効性を確かめたものである。

2. 検出すべき誤差要因

本研究では、既報[1]の歯切法によるハイポイドギヤを熱処理し、その熱処理変形を調べる。このハイポイドギヤは、(リング)ギヤおよびビニオンを正しく製作すれば必然的に歯当たりが指定した位置に得られる歯車対である。したがって、平行歯車と同じようにギヤおよびビニオンの個々の歯車を正しく製作することを心掛けるべく、従来のハイポイドギヤのように歯車対としての歯当たりを得る必要はない。

このハイポイドギヤでは、ギヤは成形歯切りした歯がり歯車歯であり、ビニオンギヤをこのギヤと等価な工具歯車で直接成形歯切りされる。ビニオン歯車には歯面修正が施されている。図1にギヤの歯切方法を示す。O_n-x_ny_nz_nは歯切盤に設定した座標系で、O_nはマン
ハイボイドギヤの熱処理変形に関する研究

センタ、x_n, y_n, z_nの各座標軸はそれぞれ V, H, クレードル軸に一致している。z_n軸はカッタ軸であり、クレードル軸に平行である。O_cはカッタ中心でその位置は $(V_o, H_o, 0)$にあ る。z_n軸はギヤ歯軸で、O_yはギヤ歯底円すい頂点、A_{c}はギヤ歯底円すい形である。環状フライスカッタの内・外両側刃は、グリッソ方式では直線であるが、本研究のギヤおよび既報のギヤの歯切りでは、内・外両側刃は曲率半径の大きな円弧である。円弧切刃刃の曲率半径を r_c、カッタに固着した座標系 $O_c-x_c y_c z_c$で $x_c=0$なる平面内で円弧曲率中心の座標を y_0, z_0とする（図1）。

ギヤ歯面は変形が起こるから、切れ刃の形成する回転面そのもののが転写される。よって、ギヤ凹面歯切り時に誤差が生じるであろうと考えられる要因は、V_o, H_o, A_{c}, y_0, z_0などである。既報では、これらのうちカッタ中心の座標 V_o, H_oに関して特に、動径に相当するラジアルセッティング $R_a(=\sqrt{V_o^2+H_o^2})$ と偏角に相当するカッタ中心旋回角 $A_{c}(=\tan^{-1}(H_o/V_o))$ をとで表すことにより、R_a, A_{c}, A_{c}, y_0, z_0などを誤差要因にした。

誤差要因の誤差は歫面上の点の座標測定値群から最小二乗法によって求めると、すべての誤差要因の誤差を同時に求めることは誤差間の独立性の問題などもあり困難であるから、それらを別々に求める。また、同時に測定値群と理論歫面との不一致を示す適応精度を求める（8）、この適応精度 Δtが小さいということは測定値群より適応する理論歫面が推定されたことを意味するから、上述の誤差要因 R_a, A_{c}, A_{c}, y_0, z_0などのうち Δtが最も小さくなる要因の誤差をまず検出すべきである。そして、誤差を含めたその要因の値のもとで他の各要因についてそれぞれの誤差と Δtの値を求める。もし、Δtの値がよりも小さくなった場合には、誤差を含めたその要因の値を用いれば検出した理論歫面は測定値群にさらに一致することになるから、その要因も検出対象の誤差要因にする。Δtがより小さくならなければ、最初に Δtが最も小さくなった要因以外の誤差には誤差がないとしてよい。

このように、誤差要因の誤差を別々に求めたり、最初に Δtが最も小さくなる誤差要因を検出し、次に誤差を含めたその要因の値のもとで他の要因の誤差を検出できるのは、すなわち二つの誤差要因の重ね合わせができるのは、各誤差は、それぞれ小さいために、誤差の二乗和の最小値に対して線形であるとみなすことができることである。

ピニオン歫面についてもギヤ歫面の場合と同じ考え方で検出すべき誤差要因を求める。

3. 熱処理方法

材質が SCM420 の表 1 に示す諸元のハイボイドギヤを歫切りした後、熱処理した。熱処理方法はガス浸炭である。ギヤについては、図 2 に示すように 920°Cの浸炭ガス雰囲気中に 200 分間保持し、その後 840°Cまで冷却しその温度で 5 分間保持した。そして、焼入れをするために歫車を 150°Cの油中に投じて 5 分間保持し、その後再加熱して 165°Cで 120 分間保持し、焼し残し処理を行った。ビニオンのガス浸炭も同じ方法で行ったが、浸炭深さを深くするために浸炭ガス雰囲気中の温度を 930°Cとした。

4. 熱処理変形の検出

4-1. ギヤ歫面の熱処理変形 ギヤ凹面歫面の熱処理変形

<table>
<thead>
<tr>
<th>表 1 ギヤ歫面の熱処理変形</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of teeth</td>
<td>Gear</td>
</tr>
<tr>
<td>Spiral angle</td>
<td>33°01'</td>
</tr>
<tr>
<td>Radial setting</td>
<td>R_{a1}</td>
</tr>
<tr>
<td>Radial offset</td>
<td>70.342mm</td>
</tr>
<tr>
<td>Module</td>
<td>3mm</td>
</tr>
</tbody>
</table>

図 1 リングギヤの歫切り
図 2 リングギヤの熱処理過程
表 2 熱処理前に求めた誤差要因の誤差と Δl

<table>
<thead>
<tr>
<th>Error factor</th>
<th>Error (mm)</th>
<th>Δl(μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_w</td>
<td>0.079</td>
<td>2.3</td>
</tr>
<tr>
<td>A_w</td>
<td>0°45'</td>
<td>8.3</td>
</tr>
<tr>
<td>Z_s</td>
<td>0.461mm</td>
<td>3.0</td>
</tr>
<tr>
<td>λ</td>
<td>0°58'</td>
<td>8.5</td>
</tr>
<tr>
<td>y_0</td>
<td>-0.142mm</td>
<td>3.0</td>
</tr>
<tr>
<td>z_0</td>
<td>0.462mm</td>
<td>3.0</td>
</tr>
</tbody>
</table>

表 3 熱処理前に $R_w=70.421$ mm として求めた誤差要因の誤差と Δl

<table>
<thead>
<tr>
<th>Error factor</th>
<th>Error</th>
<th>Δl(μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_w</td>
<td>-0°3'</td>
<td>2.3</td>
</tr>
<tr>
<td>Z_s</td>
<td>0.009mm</td>
<td>2.3</td>
</tr>
<tr>
<td>λ</td>
<td>0°5'</td>
<td>2.2</td>
</tr>
<tr>
<td>y_0</td>
<td>0.001mm</td>
<td>2.3</td>
</tr>
<tr>
<td>z_0</td>
<td>0.010mm</td>
<td>2.3</td>
</tr>
</tbody>
</table>

表 4 熱処理後に求めた誤差要因の誤差と Δl

<table>
<thead>
<tr>
<th>Error factor</th>
<th>Error (mm)</th>
<th>Δl(μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_w</td>
<td>0.082</td>
<td>3.2</td>
</tr>
<tr>
<td>A_w</td>
<td>1° 2'</td>
<td>7.3</td>
</tr>
<tr>
<td>Z_s</td>
<td>0.482mm</td>
<td>3.5</td>
</tr>
<tr>
<td>λ</td>
<td>1°14'</td>
<td>7.9</td>
</tr>
<tr>
<td>y_0</td>
<td>-0.147mm</td>
<td>3.9</td>
</tr>
<tr>
<td>z_0</td>
<td>0.483mm</td>
<td>3.5</td>
</tr>
</tbody>
</table>

表 5 熱処理後に $R_w=70.424$ mm として求めた誤差要因の誤差と Δl

<table>
<thead>
<tr>
<th>Error factor</th>
<th>Error</th>
<th>Δl(μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_w</td>
<td>-0°3'</td>
<td>3.2</td>
</tr>
<tr>
<td>Z_s</td>
<td>0.005mm</td>
<td>3.2</td>
</tr>
<tr>
<td>λ</td>
<td>0°7'</td>
<td>3.0</td>
</tr>
<tr>
<td>y_0</td>
<td>0.002mm</td>
<td>3.2</td>
</tr>
<tr>
<td>z_0</td>
<td>0.005mm</td>
<td>3.2</td>
</tr>
</tbody>
</table>
後でNo.1〜No.5までの5個のギャについてそれぞれ6枚の歯面のR_pの平均値とばらつきの最大値を示している。図3から、熱処理前後のギャについても同一ギャでR_pの歯面間のばらつきは小さく、また歯面間のばらつきも小さいことがわかる。測定した5個のギャの全歯面についてのR_pの平均値は、70.417 mmであった。これより、$R_p=70.342 mm$で歯切りすべきところ、実際には0.075 mm大きい$R_p=70.417 mm$で歫切されていっていたことになる。これに対し、熱処理後に検出したR_pの平均値は70.422 mmで、熱処理前の70.417 mmと比較してほとんど変わっていない。すなわち、ギャ凸歯面に関しては熱処理変形は平均的にはほとんど生じていないと考えてよい。しかし、歫面間の熱処理変形のばらつきは大きくになっている。特にNo.2のギャで大きくとなっているが、これは偶発的な異常変形を示すものと思われる。熱処理後のNo.2のギャを除いた残りの全測定歫面のR_pのばらつきの最大値は熱処理前で0.054 mm、熱処理後で0.079 mm、標準偏差は熱処理前で0.013 mm、熱処理後で0.022 mmであった。すなわち、R_pの5個のギャ全体としてのばらつきの最大値と標準偏差はともに熱処理によって1.5倍程度に大きくなっている。

4.2 ピオン歫面の熱処理変形 ピオン歫面の熱処理変形を調べた。ピオンの歫数は17枚であり、1枚おきに4枚の歫面を測定した。すなわち、5個のピオンで計20枚の歫面を測定した。そして、これらの歫面のうちから任意の歫面1枚を選び、その誤差要因の誤差を検出すべきかを調べた。熱処理前後ともにラジアルセッティングR_pだけを検出すべき誤差要因に過ぎばよいことがわかった。

そこで、20枚のピオン歫面を熱処理前後に測定し、それぞれについてR_pの値とΔtの値を求めた。検出したR_pに対するΔtの値は熱処理前で3.6〜9.1 μm、熱処理後で5.5〜9.7 μmの範囲にあった。大きくねじれているピオン歫面、すなわち変化の激しい歫面でΔtの値がすべて10 μm以下であるという結果から、どの歫面についても熱処理前後の歫面の変形はR_pのみで評価できると考えていであろう。図4にR_pの検出結果を示す。図4から、熱処理前後のピオンについてもピオンピオンでR_pの歫面間のばらつきは小さく、またピオンピオン間のばらつきも小さいことがわかる。測定した5個のピオンの全歫面についてのR_pの平均値は、70.501 mmであった。これより、$R_p=70.592 mm$で歫切すべきところ、実際には0.091 mm小さい$R_p=70.501 mm$で歫切されていなかったことがある。ところで、熱処理後のR_pの平均値は70.585 mmで、熱処理前それによりて0.084 mm大きくなかったが、結果としては偶然にも設計値に近い値になった。一方、R_pのばらつきは同一ピオンでは熱処理前後ではほとんど変わらないが、ピオンピオン間のばらつきは熱処理によって大きくなっている。測定した全歫面のR_pのばらつきの最大値は熱処理前で0.061 mm、熱処理後で0.144 mm、標準偏差は熱処理前で0.020 mm、熱処理後で0.038 mmであった。すなわち、R_pの5個のピオン全体としてのばらつきの最大値と標準偏差はともに熱処理によって2倍程度に大きくなっている。

ところで、ハイポイドギャの熱処理変形は一般的に、(1)ねじれ角が小さくなるように生じ、(2)その変形量はギャよりもピオンのほうが大きいといわれている。本研究のハイポイドギャの熱処理変形は、すでに述べたようにラジアルセッティングの大きくなるように変形するが、その変形量は平均的にはギャ歫面で無視できるほど小さく、ピオン歫面で0.084 mmであった。これより、本研究のハイポイドギャの熱処理変形は(2)と同じ傾向にあると言える。しかし、(1)と同じ傾向にあるかどうかはただちに判断することはできない。そこで、ピオン歫面上の中央部の一点でラジアルセッティングR_pが70.501 mmから70.585 mmに変化したときねじれ角がどのように変
5. 検出誤差の歯切り作業へのフィードバック

熱処理後に設計歯面に近いハイボイドギヤ歯面を得るため、熱処理後の歯車について検出したラジアルテッティングの平均値と設計値との差を歯切り誤差とみなし、これを修正して歯切りを行った。

ギヤ凸歯面については、熱処理後の \(R_{w} \) の平均値が設計値より 0.080 mm 大きくなったので、\(R_{w} \) を 0.08 mm 減少させて新たに 5 個のギヤを修正歯切りした。そして、30 枚の歯面を熱処理前後に測定し、それぞれについて \(R_{w} \) の値と \(\Delta t \) の値を求めた。\(\Delta t \) の値は修正歯切り前と同じ程度に小さく、熱処理前の歯面の変形は \(R_{w} \) のみで評価できることが確認できた。図 5 に修正歯切りした後の \(R_{w} \) の検出結果を示す。図 5 より、予測どおり、熱処理によって \(R_{w} \) のばらつきは大きくならないが、熱処理変形はほとんど生じていないことがわかる。熱処理後の全測定歯面の \(R_{w} \) の平均値は 70.362 mm であり、設計値との差は 0.020 mm とわずかである。これにより、全体として熱処理後に設計歯面に近いギヤ凸歯面が得られたと考えてよく、熱処理変形を見込んだ修正歯切りの効果がわかる。

ビニオン歯面に関しては、偶然にも歯切り誤差と熱処理変形が相殺しあい、熱処理後に設計歯面に近い歯面が得られており、修正歯切りの必要はない。

図 5 修正歯切り後の \(R_{w} \) の検出結果

図 6 修正歯切りしないギヤ凸歯面上での歯当たり

図 7 修正歯切りしたギヤ凸歯面上での歯当たり

図 8 狂いの最も大きい歯車対のギヤ凸歯面上での歯当たり
ハイポイドギヤの熱処理変形に関する研究

さて、設計歯面に近い熱処理後のビニオンと修正歯切りしない熱処理後のギヤおよび修正歯切りした熱処理後のギヤとそれぞれかみあわせた。かみあわせた歯車はラジアルセッティングの狂いの最も小さいものを選んだ。すなわち、熱処理したビニオンが図4のNo.2、修正歯切りしない熱処理ギヤが図3のNo.4、修正歯切りした熱処理ギヤが図5のNo.5である。図6に修正歯切りしない熱処理ギヤ歯面での歯当たりを示す。（a）が歫当たり写真、（b）が歫当たりスケッチ結果である。図6（b）中の黒丸印で示した点は歯の中央部に定めた設計歫の歫当たりの中心点である。図7に修正歫切りした熱処理ギヤの歫当たりを図6と同様に示す。修正歫切りした場合の歫車では歫当たりが歫の中央部に移ており、その効果のあることがわかる。

以上より、熱処理変形を見込んだ修正歫切りの有効性が確かめられたものと考える。

6. 熱処理変形のばらつきに関する考察

5章までで、熱処理変形を見込んだ歫切りが可能であることがわかったが、その変形量を評価するラジアルセッティングは当然のことながらばらついている。6章では、このばらつきについて考察する。

本研究のハイポイドギヤは、ビニオン歫面に歫面修整は施されずかな非共役性を示す歫車対であり、計算によればその最大回転角変位差は約13秒である。非共役な歫車対では、歫切り誤差や組立誤差があるが、歫当たり模様が変化せず、場合によっては回転角変位差も小さくできる。したがって、熱処理変形のばらつきの程度が歫車面のわずかな非共役性の程度に比べより小さければ、特に問題はないと考えられる。

本研究の歫車対の非共役性が熱処理変形のばらつきを吸収できるかどうかを調べるため、熱処理後のラジアルセッティングの狂いの最も大きい図5のNo.2のギヤと図4のNo.4のビニオンをかみあわせ、ギヤ歫面上での歫当たりを調べた。その結果を図6、7と同様に図8に示す。図8の歫当たりは、図7の狂いの最も小さい歫車対のものと比較してほとんど差異はみられない。これより、本研究で用いたハイポイドギヤの非共役性は熱処理変形のばらつきを吸収できるものであることがわかる。

7. 結 言

ハイポイドギヤの熱処理後の歫面には熱処理変形が生じ、設計歫面とは異なった歫面になっていると考えられる。本研究は、熱処理前後のハイポイドギヤ歫面を三次元座標測定機で測定し、その測定値から熱処理変形を検出したものである。その結果を要約すると以下のようになる。

（1）本研究のハイポイドギヤ歫面の熱処理変形は歫切り時の工具取付誤差に含めて取扱うことができる。

（2）したがって、歫切り誤差と熱処理変形を総合した誤差を歫切り誤差に含めて検出し、これを修正して歫切りを行えば、各歫車間、各歫面間で熱処理変形のばらつきはあるものの、熱処理後に設計歫面に近いハイポイドギヤ歫面を得ることができる。

（3）本研究で用いたハイポイドギヤでは、その非共役性を利用することで熱処理変形のばらつきを吸収することができる。

終わりに、熱処理・歫切実験にご協力いただいたスズキ（株）の竹内誠一課長、羽田芳彦主任ならびに（株）長岡歫車製作所の市野之彬部長にお礼申し上げる。

文 献

（1）上野，歫車工学，（1977），102，共立出版。

（2）例えば、歫車規格編集委員会編，歫車規格，（1962），1139、日刊工業新聞社。

（3）川崎・田村，機論，59-567、C（1993），3513。

（4）川崎・田村，機論，59-564，C（1993），2544。

（5）田村・ほか2名，機論，60-575，C（1994），4250。

（6）Gleason Works, How to Test Bevel Gears,（1955）。

（8）仙波，歫車，2（1975），232、日刊工業新聞社。

（9）大泉・酒井，機論，49-444，C（1983），1426。