Analysis of Vehicle Handling Characteristics and Stability
Using Feedback Terms between State Variables
(1st Report, Basic Analysis of Linearized System)

Fukashi SUGASAWA, Masao NAGAI and Hiroshi MOURI

Analysis method of vehicle handling characteristics and stability has been carried out by using the system matrix for state variables. The effects of the terms of the system matrix on the performances have been clarified and the evaluation method using these terms has been derived. It has been verified that the control law derived from this evaluation method improves vehicle handling characteristics and stability in integrated control.

Key Words: Motion Control, Stability, Maneuverability, Automobile, Vehicle Dynamics, Handling Characteristics

1. はじめに

操安性は、車の回転運動（ヨー）と横移動（横加速度または車体横滑り角）の二つの運動を扱うが、この二つは互いに強く拘束し合っているため、どちらか一つを代表特性として評価することがかった。

ところで、4WS等の操安性能に関係する電子制御ユニットの登場により、二つの運動の拘束条件が緩くなり、片方だけの評価では評価しきれない状況になってきている。

本報の狙いは、二つの運動を近似することなく、互いの連成状況を含めてそのまま記述・解析できる方法で、かつ、総合制御において、制御則を導く際の指標にも応用できる方法を見出すことである。

検討の結果、二つの運動を表す状態変数間のフィードバック要素を中間パラメータとして評価指標とする解析法が、操安性解析に有効なことが明らかとなったので報告する。

本考え方は、もちろん非線形な系にも適用できるが、本報告は第1報として、タイヤ線形域についてもに述べる。

記号

- \(a, b \): 前/後軸と重心との距離
- \(A_c \): 変換係数
- \(B_o \): フィードバックパラメータ
- \(C_r, C_c \): 前/後軸コーナリングパワー
- \(F_r, F_f \): 前/後横力
- \(F_o \): フィードフォワードパラメータ
- \(I_z \): 車両ヨー慣性モーメント
- \(m \): 車両質量
- \(M_o \): ヨーモーメント
- \(r \): ヨーレイト
- \(S \): ラプラス演算子
- \(V \): 車速
- \(\beta \): 車体横滑り角
- \(\delta_r, \delta_c \): 前/後軸舵角
- \(\beta \): 特性方程式
- \(\zeta \): 二次振動系における減衰比
- \(\omega_n \): 二次振動系における共振点角周波数

2. 解析法

2-1 基本パラメータ 操舵や横風などの外乱も

--- 183 ---
含めて、入力をモーメントと横力の二入力に統合し、出力であるヨーレイトと横滑り角の二つの状態数からのフィードバック項をまとめて、図1に示すブロック図が得られる。F_Dは、操舵系の入力に対する前置補償器の機能を果たす各種入力からのフィードフォードパラメータ、A_kは変換係数、B_kは、系の基本特性を決める車両の状態変数によるフィードバックパラメータである。

2.2 二輪モデルでのパラメータの値 二輪モデル(付録Fig.A-1参照)の基礎式(1)〜(4)から式(5)を導き、式(6)に対応するパラメータを求めると、式(7)〜(12)で表されるように、すべてラプラス演算子Sを含まない定数となる。なお、A_1、A_2は、車両のヨー慣性と質量、車速とで決まる量で、式(13), (14)で表される。

$$F_D = C_r \left(\delta_r - \frac{ar}{V} - \beta \right)$$ \hspace{1cm} (1)

$$F_r = C_r \left(\delta_r + \frac{br}{V} - \beta \right)$$ \hspace{1cm} (2)

$$aF_r - bF_r = Iz \frac{dr}{dt}$$ \hspace{1cm} (3)

$$F_r + F_r = mV \left(r + \frac{\beta}{V} \right)$$ \hspace{1cm} (4)

$$\begin{bmatrix} \frac{dr}{dt} \\ \frac{d\beta}{dt} \end{bmatrix} = \begin{bmatrix} \frac{-a^2C_r + b^2C_r}{IzV} & \frac{bC_r - aC_r}{Iz} \\ \frac{bC_r - aC_r}{mV} & \frac{-C_r + C_r}{mV} \end{bmatrix} \begin{bmatrix} r \\ \beta \end{bmatrix}$$ \hspace{1cm} (5)

式(5)の無次元化が得られる。

2.3 フィードバックパラメータ

2.3.1 基本的な作用 フィードバックパラメータが車両の基本特性を決めるため、各フィードバックパラメータの基本的な働きを調べる。

図1からわかるように、式(6)のシステム行列の対角項B_{11}, B_{22}はヨーレイト、横滑り角を直接フィードバックする成分であり、連成項B_{12}, B_{21}は互いに影響を与え合う項である。

フィードバックパラメータのみで構成した、図2に示す基本形の特性は、式(15)〜(17)で表される二次遅れ系である。このときの特性方程式Δは式(17)で表される。

$$r = \frac{(S + B_{22})M_r + B_{12}F_r}{\Delta}$$ \hspace{1cm} (15)

$$\beta = \frac{B_{21}M_r + (S + B_{11})F_r}{\Delta}$$ \hspace{1cm} (16)

$$\Delta = S^2 + \Delta s + \Delta$$ \hspace{1cm} (17)

$$\Delta = B_{11} + B_{22}$$ \hspace{1cm} (18)

一般に、高速ではB_{21}のみ負の値になり、他のフィードバックパラメータはすべて正の値となる。したが
って、特性方程式の定数項 a_0 は正となり安定である。
$M_i = A_iM_i$, $F_i = A_iF_i$ と表される。

$$M_i = A_iM_i, F_i = A_iF_i \quad \text{(18)}$$

式(17)の特性方程式から、2 次の振動系として見た場合の ω_n, ζ は式(19)～(21)となり、各フィードバックパラメータが及ぼす影響は表1のようになる。

$$\omega_n^2 = a_0 = B_{1i}B_{3i} - B_{2i}B_{1i} \quad \text{(19)}$$

$$\frac{\zeta}{\omega_n} = \frac{B_{1i} + B_{2i}}{2} \quad \text{(20)}$$

$$\zeta = \frac{B_{1i} + B_{2i}}{2\sqrt{B_{1i}B_{3i} - B_{2i}B_{1i}}} \quad \text{(21)}$$

このことから、対角項 B_{1i}, B_{2i} は大きくなるほどすべての性能が向上するが、連成項 B_{3i}, B_{2i} の変更は、応答性とダンピングとのトレードオフを考慮しなくてはならないことがわかる。B_{2i}, B_{2i} とともに零に近づけるほど、ダンピングはよくなるが応答性は劣化する。

次に、これらの内容をシミュレーションで確かめる。

2-3-2 フィードバックパラメータの影響 フィードバックパラメータの値の変動が車両特性にどう影響するかを、シミュレーションで求めた結果を図3, 4に示す。これらは、B_{1i} をおのおの単独で大きくした場合の特性で、比較しやすいようにヨーレイトの定常ゲインがそうようにステアリングギア比を調整してある。

(a) 操舵応答性 対角項 B_{1i}, B_{2i} を大きくする

(self) above にヨーレイトのオーバーシュートを少なくする方向に作用する。応答性に関しては、B_{2i} を大きくし過ぎると過ダンピングとなる可能性があり、B_{3i} とバランスよく大きくすることが望ましいことがわかる。定常横滑り角も、ともに減少するが、B_{1i} を大きくしたほうがより減少する。連成項の B_{3i}, B_{2i} は絶対値を大きくすると、ともにヨーレイトの応答性は向上するが、振動的になる。定常横滑り角は、両者で逆の傾向を示し、B_{2i} を大きくするよう減少するのに対し、B_{3i} の絶対値を大きくすると増加し、その影響は B_{2i} よりも大きい。

(b) 横風安定性 対角項 B_{1i}, B_{2i} を大きくすると、いずれも非振動的になるとともに、ヨーレイトの発生は抑えられる。定常横滑り角は、B_{2i} を大きくした場合は増加してしまうが、横風入力時のこの影響は比較的小さいと考えられる。

連成項、B_{3i}, B_{2i} を大きくした場合は、ともに振動的になる。発生するヨーレイトの大きさは両者で逆傾向を示し、B_{2i} を大きくすると、大きくなっててしまう。定常横滑り角はともに減少する。

2-3-3 フィードバックパラメータの変動 次に、各フィードバックパラメータが車速および、コーナリングパワー前後バランスにより、どう変化するかを図

Table 1 Vibrational characteristic changes by feedback parameters

<table>
<thead>
<tr>
<th>Feedback Parameters</th>
<th>ω_n</th>
<th>ζ</th>
<th>ζ / ω_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{1i}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_{2i}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_{3i}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_{1i} up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_{2i} up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_{3i} up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_{1i} up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※: Increase absolute value

Fig. 3 Step response (steering wheel angle input)

Fig. 4 Step response (cross wind input)
状態変数間の連成項に着目した操作性解析方法（第1報）

5.6におの示す。
(a) C_p バランスの影響 図より B_{12} だけが大き
く変わり、他の変化は小さいことから、車両のチュー
ニングがよく行われる C_p 前後バランスでの特性変更は、B_{12} が変わることの影響がほとんどといえる。
また FR 車での駆動力によるスピンは、リアのコーナリングパワーが低下して B_{12} が負になり、不安定な系になることによるものであるから、横滑り角フィードバックヨーモーメント制御で補償が可能である。
(b) 車速の影響 図より対角項 B_{11}, B_{22} は車速
に反比例、B_{12} は独立、B_{21} が高速ではほとんど影響を
受けないことがわかる。したがって高速では、B_{11} と
B_{22} が減ってくることによる性能変化がほとんどであ
り、車速に応じて、B_{11}, B_{22} を大きくする制御を行
えば、車速上昇による性能劣化は補正できることができる
、逆にいうと、アンダーステアにして、B_{12} により高速
安定性を図るのは、車速変化の特性補償と見なすこと
はできないことがわかる。

2.4 これまでの評価値との比較
2.4.1 スタティックマージン スタティックマージン(SM)の定義と式(10), (12)から、次式が得られる。

$$SM = \frac{bC_r - aC_f}{1(C_r + C_f)I} \frac{I_z B_{12}}{B_{22}}$$

これまでの本解析によれば、B_{12} は小さく、B_{22} は大きいかほうがよい、「安定性を確保するために、スタティックマージンを大きくする」というこれまでの考えとは一見矛盾してしまう。しかし、これは次のようにとらえ直すことができる。

(a) 安定性を表す指標としての見方 式(17)の特性方程式からもわかるように、安定性の指標としては$\Delta b(=B_{11} - B_{22} - B_{12}^2/B_{22})$ が本来の値であるが、図5に示すように実質は B_{22} (=スタティックマージン)による影響がほとんどであったため、代表値として用いら
れてきたと考えられる。しかし、図5の特性から自由な環境下では、より本質的な$\Delta a = B_{11} - B_{22} - B_{12}^2/B_{22}$ で評価すべきである。

(b) 物理的意味について スタティックマージ
ンは、安定性を向上する作用について非常にわかりやすい物理的解釈がなされている。すなわち「発生した横滑り角に対し、反対方向へのヨーモーメントを発生させ安定性を確保する」ということであるが、これは生じたヨーレイトが、横滑り角を抑える作用をするという条件(この場合 $B_{22} < 0$)でのみ成立することである。また、余分なヨーレイトをいったん発生させなければなら
いわけであり、本来なら発生した横滑り角を直接抑
える横力を発生させる成分(B_{22})が望ましいはずであ
る。

特性方程式定常項のΔa は、式(23)での表現を式
(24)のように変形すると、括弧内第1項が $\frac{d\beta}{dt}$ への
β からの直接フィードバック成分、第2項がヨーレイ
トを発生させて間接的にフィードバックされる成分とな
るため、フィードバックのトータルが正か負かを表す式ととらえることができ、安定性的物理的解釈が行
える。

$$\Delta a = B_{11} - B_{22} - B_{12}^2/B_{22}$$

$\Delta a = B_{11} - B_{22} - B_{12}^2/B_{22}$

Fig. 5 Feedback parameter changes by rear cornering power

Fig. 6 Feedback parameter changes by vehicle speed

Fig. 7 Spring and mass model

Fig. 8 Block diagram of spring and mass model

—186—
これらのことから、二輪モデルのようなフィードバックパラメータの自由度が少ない場合には、スタティックマージンで実質代表できるが、電子制御での自由度が大きい場合には、\(\Delta m = B_m \Delta x - B_m \Delta x \) の評価のほうが、本来の考え方であることがわかる。したがってスタティックマージンで安定性を向上させる内容は、\(B_m, B_2 \) 大きくとれない状況下における、次善の策であるといい、できることなら、直接構成角を抑える \(B_m, B_2 \) で、安定性を確保するのが望ましい。

2.4.2 モーメント法、\(\beta \) メソッド 「任意の状態変数条件でのヨーモーメントと横力に相当する値を解析している点」では、本解析法は、モーメント法\(^{11}\)や \(\beta \) メソッド\(^{23}\)と同じであるが、それぞれをさらに「対角成分、直接成分いずれのフィードバック成分かを区別して解析している点」が異なる。これは、図7に示すばねマス系の2次の振動系に例えると、この場合のブロック図は図8が得られる。この場合二つの出力 \(X \) と \(X \) ドットは独立ではないため、\(B_m \) と \(B_2 \) は1と0に決まるが、直接成分がダンパ \(\alpha \) に相当し、対角成分がばね \(k \) に相当することができる。したがって違いない、マスに作用する力を、ばねによる分 \(F_k \) とダンパによる分 \(F_c \) とを区別して考えると、両者の合力 \(F_{total} = F_k + F_c \) だけで考えるかに相当する。いうまでもなく、その項の挙動だけを考慮するには、合力 \(F_{total} \) で十分であるが、ダンピングなどの運動の質を考慮するならば、\(F_k \) と \(F_c \) とを分けて考えが必要がある。分けて解析する本解析法では、シミュレーションによる定常状態までの挙動計算を行うことなく、その瞬間の状態数の判断だけで車両運動の質が論じられるため、リアルタイム制御への適用が可能となり、次に述べる総合制御に応用ができる。

3．応用（総合制御への適用）

3.1 考え方 総合制御でのこれまでの解析は、「ある制御ユニット単独の制御によるデメリットを補い合うように、複数の制御ユニットを制御する\(^{11}\)」のと、「タイヤのスリップ角、スリップ率、輪荷重については、制御効果の大小あるいは限界から、線形域はスリップ角制御、非線形域は前後加速度の大小によるスリップ率あるいは輪荷重制御、とおのおのの使い分ける\(^{11}\)」もののが報告されている。

しかし、安定性を含めて最大の制御効果を得るための使い分けに関しての報告は見られない。これは、評価量として、操舵入力に対する応答特性だけを用いたので、各制御方式ごとの優劣をつかがたく、また、安定性を考慮するには適切な評価量がなかったことによると思われる。

これまで述べてきたフィードバックパラメータによる評価法は、安定性を含む系の基本特性の評価法であるから、この評価法を適用すれば総合制御における制御分担の考え方を導くことができる。

具体的には、\(B_m \) を軸とする二次元空間での望ましい方向を、各制御則がもつベクトルの組合せでどう実現するかの問題となる。

3.2 ヨーモーメントと後軸駆動での総合制御 線形域での総合制御の例として、制御効果の高い、「後軸駆動制御」と「制駆動力左右差によるヨーモーメント制御」との二つのシステムを総合制御する場合について解析する。

Fig. 9 Block diagram of control system
Table 2 Feedback parameter changes by control parameters

<table>
<thead>
<tr>
<th>δ_1 Cont.</th>
<th>M_2 Cont.</th>
<th>δ_2 Cont.</th>
<th>B_3</th>
<th>B_4</th>
<th>B_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{θ_1}</td>
<td>K_{θ_2}</td>
<td>K_{θ_3}</td>
<td>K_{θ_4}</td>
<td>K_{θ}</td>
<td></td>
</tr>
<tr>
<td>K_{θ}</td>
<td>K_{θ_1}</td>
<td>K_{θ_2}</td>
<td>K_{θ_3}</td>
<td>K_{θ_4}</td>
<td></td>
</tr>
<tr>
<td>K_{θ_1}</td>
<td>K_{θ_2}</td>
<td>K_{θ_3}</td>
<td>K_{θ_4}</td>
<td>K_{θ}</td>
<td></td>
</tr>
<tr>
<td>K_{θ_2}</td>
<td>K_{θ_1}</td>
<td>K_{θ_3}</td>
<td>K_{θ_4}</td>
<td>K_{θ}</td>
<td></td>
</tr>
<tr>
<td>K_{θ_3}</td>
<td>K_{θ_1}</td>
<td>K_{θ_2}</td>
<td>K_{θ_4}</td>
<td>K_{θ}</td>
<td></td>
</tr>
<tr>
<td>K_{θ_4}</td>
<td>K_{θ_1}</td>
<td>K_{θ_2}</td>
<td>K_{θ_3}</td>
<td>K_{θ}</td>
<td></td>
</tr>
</tbody>
</table>

: up 0: up to 0 0: down to 0

Table 3 Control parameters

<table>
<thead>
<tr>
<th>δ_1</th>
<th>M_2</th>
<th>δ_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{θ_1}</td>
<td>K_{θ_2}</td>
<td>K_{θ_3}</td>
<td>K_{θ_4}</td>
<td>K_{θ}</td>
<td></td>
</tr>
<tr>
<td>K_{θ}</td>
<td>K_{θ_1}</td>
<td>K_{θ_2}</td>
<td>K_{θ_3}</td>
<td>K_{θ_4}</td>
<td></td>
</tr>
<tr>
<td>K_{θ_1}</td>
<td>K_{θ_2}</td>
<td>K_{θ_3}</td>
<td>K_{θ_4}</td>
<td>K_{θ}</td>
<td></td>
</tr>
<tr>
<td>K_{θ_2}</td>
<td>K_{θ_1}</td>
<td>K_{θ_2}</td>
<td>K_{θ_3}</td>
<td>K_{θ_4}</td>
<td></td>
</tr>
<tr>
<td>K_{θ_3}</td>
<td>K_{θ_1}</td>
<td>K_{θ_2}</td>
<td>K_{θ_3}</td>
<td>K_{θ_4}</td>
<td></td>
</tr>
<tr>
<td>K_{θ_4}</td>
<td>K_{θ_1}</td>
<td>K_{θ_2}</td>
<td>K_{θ_3}</td>
<td>K_{θ_4}</td>
<td></td>
</tr>
</tbody>
</table>

: up 0: up to 0 0: down to 0

Fig. 10 Integrated control
(Steering wheel angle input)

Fig. 11 Integrated control
(Cross wind input)

Fig. 12 Integrated control
(Handling response and stability)

後輪舵角制御におけるフィードバック制御に関しては、ヨーレイトフィードバック（rFB）と横滑り角フィードバック（βFB）が考えられているが、横滑り角を上手に制御した制御として、以下の二つの方法が提案されている。

後輪制御 I：$rFB + \alpha FB$
後輪制御 II：$rFB + \beta FB$

ここで、ヨーレイトも含めた特性の改善を目指して、モーメントコントロールで得た自由度をどのように活用し、二つのユニットをどのように制御したらよいか、本解析法を基に検討する。

ここで制御系を整理しておくと図9のように五つの制御パラメータをもつことになり、各制御パラメータがフィードバックパラメータに及ぼす影響は表2のようになる。制御特性は、制御パラメータによるモーメントコントロールは、タイヤ摩擦円の影響を除いてのフィードバックパラメータに影響を及ぼすが、ここでは線形形ということで、制御特性を実現する制御パラメータを考慮することにする。

検討する制御仕様としては、以下の4種類を2WSと比較した。

仕様 1：後輪制御 I

-188-
仕様 2：後輪制御 2 (K_{sw} 小)
仕様 3：後輪制御 2 (K_{sw} 大)
仕様 4：総合制御 (後輪制御 + モーメント制御)

このときの制御定数は、表 3 である。表 2, 3 から求めた、各仕様とフィードバックパラメータの変化を表 4 に示す。総合制御の仕様 2, 3 では、B_{12} が大きくなってしまっているのを、仕様 4 ではモーメントコントロールを用いて、理想的な値にしたものである。

操舵入力での応答と、横風入力での応答を、図 10、11 に示す。これでも、ヨーレイトゲインをそろえるためにステアリングギヤ比を調整してある。

操舵入力に対する応答を見ると、ヨーレイトは制御によりすべて非振動的になっている。応答性は、仕様 1 と 4 は向上しているものの仕様 2 は悪化しており、仕様 3 ほぼ同様である。したがって K_{sw} 仕様 3 での優れはない必要である。

次に、横風に対する応答を見ると、ヨーレイトのゲインは式 (15) からわかるように B_{12} に影響されるため、仕様 1 では減ったものの、仕様 2, 仕様 3 と B_{12} が大きくなくなってしまほど大きくより、外乱の影響を受けやすくなってしまっていることがわかる。これに対しモーメントコントロールで B_{12} を零にした仕様 4 は非常に小さくなっていることが確かめられる。

これらの結果を見やすくするために、操舵応答性として操舵入力に対する立上がり特性を、外乱安定性として横風入力に対するヨーレイトゲインを、おのおの代表特性として評価したものを図 12 に示す。総合制御により応答性と安定性の相反する二つの特性が同時に向上しており、K_{sw} と K_{sw} をさらにバランスよく増加させればより一層の性能向上が得られる。

4. 結 論

（1）操用性能を司るシステムをメカニカルなフィードバック系と見なしたとき、操用性能を表す状態変数間のフィードバックパラメータを、対角項と連成項に分けて解析することにより、系の特性判断が容易になった。

（2）フィードバックパラメータによる操用性の評価を示し、これまで報告されている評価法との比較において、矛盾のないことおよび、それ以上的内容を評価できることを確認した。

（3）総合制御において、得られた評価法に基づき導いた制御則にそって制御することにより一層の制御性能の向上を実現し、電子制御により制御自由度が増大した場合に有効であることを確認した。

付 録

Fig. A-1 Model of two degrees of freedom

文 献

(1) Rice, R.S., ほか 1 名, Static Stability and Control of the Automobile Utilizing the Moment Method, SAE Paper, No. 800847 (1980).
(5) 山本・ほか 2 名, 後輪のアクティブ操舵による操舵応答性・外乱安定性の向上, 自動車技術会学術講演会前報集, 892 (1989), 177-180.