差動歯車機構の減速効率と増速効率の比較*
（第1報，理論式の誘導と計算例）

石橋 彰*1，園田 計二*1，前之岡 好爾*2

Comparison of Speed Increase and Speed Reduction Efficiencies of Differential Gear Drives
(1st Report, Derivation of Theoretical Equations and Numerical Examples)

Akira ISHIBASHI, Keiji SONODA and Koji MAENOSONO

This paper derives new equations for calculating the efficiencies of differential gear drives using simple laws based on mechanics. When the new equations are used, the efficiency for speed reduction is lower than that for speed increase, in most cases. This is completely opposite to the case of the results obtained from the earlier equations. The reason for this is clearly shown by analyzing the power flows used for deriving the equations. It is found that the power flows used for deriving the earlier equations do not satisfy the boundary conditions due to an assumption which is unconsciously introduced in the process of deriving the equations. Numerical calculations are conducted and differences in the efficiencies are shown in the case of representative differential gear drives.

Key Words: Gear, Machine Element, Efficiency, Gear Drive, Planetary Gear, Tribology, Speed Increase, Speed Reduction

1. 緒 言

差動遊星歯車機構は、ウォームギアのように簡単に変速比を大きくすることができるが、ある限度以上に減速比を大きくすれどもウォームギアと同じように自動締め（self-locking）の現象が起こることは推定されている*1。その理由は、現在までよく使用されている遊星歯車機構の理論効率の計算式を用いれば、同じ遊星歯車機構の場合は、増速効率のほうが減速効率よりも常に低い計算値が得られるためであると考えられる。

しかし、最近著者らが明らかにした遊星歯車機構の正確な計算方法*2を用いて計算した結果と比較したところ、従来の計算式を用いれば、かなりの近似誤差の現れる場合があることに気づいた。また、差動遊星歯車機構を用いた実験でも、増速効率のほうが減速効率よりも高くなるという結果を得た。

本論文では、誤差の原因となる仮定が無意識で導入されることを避けるため、従来の計算式を利用しないで、力学的基本事項のみを用いて効率の計算式を誘導する。

* 原稿受付 1995年6月26日。
*1 正員、佐賀大学理工学部（福岡市本庄町1）。
*2 正員、佐賀大学大学院。
Table 1 Specifications of 3K type planetary gear drive

<table>
<thead>
<tr>
<th>2nd stage</th>
<th>Planet gear(2)</th>
<th>Internal gear(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module</td>
<td>m(mm)</td>
<td>39</td>
</tr>
<tr>
<td>No. of teeth</td>
<td>2</td>
<td>39</td>
</tr>
<tr>
<td>Pitch circle diameter</td>
<td>39.00 (mm)</td>
<td>39.00</td>
</tr>
<tr>
<td>Tooth tip diameter</td>
<td>d(mm)</td>
<td>41.00</td>
</tr>
<tr>
<td>Pressure angle</td>
<td>a(°)</td>
<td>20</td>
</tr>
<tr>
<td>Face width</td>
<td>b (mm)</td>
<td>25</td>
</tr>
</tbody>
</table>

Fig. 2 Gear drive (1) for speed reduction

Fig. 1 Experimental results on efficiencies

Fig. 1 Experimental results on efficiencies

3. ラックとピニオンを用いた

差動歯車機構の効率

動力損失は、歯面のかみあい部のみで生ずるものと仮定する。また、歯面間の動力損失は差動運動のない一対の歯車の基準効率(3-13)を用いて計算する。

3-1 減速効率の計算式の誘導 図2は二対のラックとピニオンを用いて減速する差動歯車機構(1)の模型図を示す。ピニオンのキャリアを手で引張って駆動して、下側のラックに出力された力(力)で負荷となっているおもりWをロープで引き上げているところを示している。ピッチ円半径の小さいほうのピニオンとかみあうラックがベッドに固定されている。

ピニオンのキャリアを右側(右の方向)に距離Scだけ動かせば、下側のラックが左側にScの距離だけ移動しておもり(W=Fp)を引き上げる。ピニオンはθi =Sc/Rfだけ回転するので、速度比Ciは次式で示される。

\[C_i = -\frac{S_c}{S_c} = -\frac{R_2}{R_2} \quad \text{(1)} \]

ピニオンの軸を介してピニオンの中心に作用する駆動力Fcmは、ピニオンのキャリアの動く方向と同じ方向に作用する。ピッチ円半径がRfのピニオンに作用する円周力Ff、およびピッチ円半径がRfのピニオンに作用する円周力Fcは、ピニオンに作用する二つの力およびそのモーメントがこの原理でバランスするという条件から次式で示されることがわかる。なお、サフィックスのthは摩擦損失のない場合の値(理論値)を示す。

\[F_1 = F_{cm} = F_{cm} = \frac{R_1F_{cm}}{R_2} \quad \text{(2)} \]

\[F_1 = F_{cm} = F_{cm} = \frac{R_2F_{cm}}{R_2} \quad \text{(3)} \]

一対の歯車のかみあい部の歯面間に生ずる損失DLは、基準効率を用いて表すので、円周力Fとそれがピッチ円周上で動いた距離Sに、損失率(1-η)をかけて求めることができる。したがって、ピッチ円半径Rfのピニオンとラックのかみあい部に生ずる損失DL1、およびピッチ円半径Rfのピニオンとラックのかみあい部に生ずる損失DL2は次のように表すことができる。

\[DL_1 = F_{cm}R_1(1-\eta_0) \quad \text{(4)} \]

\[DL_2 = F_{cm}R_2(1-\eta_0) \quad \text{(5)} \]

ただし、η0は上側のラックとピニオンのかみあい部の基準効率、η0は下側のラックとピニオンのかみあい部の基準効率である。

図2の差動歯車機構の理論効率は、式(4)と(5)を利用すれば次式で計算できる。
差動歯車機構の減速効率と増速効率の比較（第1報）

3・2 増速効率計算式の誘導
図3は差動歯車機構（2）を用いて增速する場合の模型図を示す。ビニオンのキャリアに付着した動力（力）で、もはやWをローブで引き上げているところを示している。入力ラックを左側に距離S₀だけ動かせば、ビニオンのキャリアは右側の歯面を移動して負荷となっているために（W=F₁）を引き上げる。このとき、ビニオンはθ₀=(S₀+|S₁|)/R₄の角度だけ回転する。

差動歯車機構（2）では、駆動ラックをS₀の距離だけ移動させたときに、ラックに作用する円周力を（S₀+|S₁|）の距離だけ移動するので、かみあう歯面間の動力損失ΔL₃は式（7）で表される。

\[\Delta L₃ = F_{s₁₀}S₀(1 - \eta₃ₐ) \] (7)

ここで、差動歯車機構の効率計算式を簡単にするため、等価効率を導入する。差動歯車機構（2）の等価効率は、駆動ラックと歯車の歯面間の損失をラックの移動量S₀のみで式（8）のように示したときの効率η₃ₐである。したがって、ΔL₃=ΔL₄とおけば、等価効率η₃ₐは式（9）で示されることがわかる。

\[\eta₃ₐ = \frac{(S₀+|S₁|)ηₐ - |S₁|}{S₀} = (1 - C₃)ηₐ + C₃ \] (9)

ただし、C₃は公転半径S₀の一種であるが、この差動歯車機構の場合は、式（1）で表されている速度比

\[C₃ = -\frac{S₀}{S₁₀} = -\frac{R₃}{(R₄-R₀)} \]

と同じである。

ラックの駆動による增速の場合には、ビニオンに作用する円周力は、駆動ラックとビニオンの歯面間の摩擦損失による円周力の減少を考慮したものである。また、ビニオンに作用する三つの力（F₁, F₂, F₃）は、その力とモーメントのバランスから計算できる。

\[F₁ = F_{s₁₀}S₀\etaₐ/(1 - \eta₃ₐ) \] (10)

\[F₂ = F_{s₁₀}R₃\etaₐR₄/(1 - \eta₃ₐ) \] (11)

\[F₃ = F_{s₁₀}R₄ \]

ピッチ円半径R₄のビニオンとラックのかみあい部に生ずる損失ΔL₄は次式で表すことができる。

\[\eta₃ₐ = 1 - \frac{\Delta L₃ + \Delta L₄}{F_{s₁₀}S₀} \]

\[= 1 - \frac{(1 - \etaₐ + \eta₃₉ - \eta₉₃₉)/(1 - R₃/R₄)}{F_{s₁₀}S₀} \]

(12)

4. 内歯車とビニオンを用いた差動歯車機構の効率

3章で示した差動歯車機構のラックの代わりに内歯車を用いれば、差動歯車機構の正確な効率計算式を従来の計算法を用いないで、力学的基本事項のみを利用して誘導できる。

4-1 減速効率の計算式の誘導
図4は二対の内歯車とビニオン（遊星歯車）を用いて減速する差動歯車機構（3）の模型図を示す。内歯車が固定されている。この図では、効率の計算に重要な円周力の方向をそれぞれが作用するピッチ円を示すため、また、ピッチ円上の基準点（P₀, P₉₉, P₉₉₉, P₉₉₉₉）を示すため、 southeastに接する二つのビッチ円は、少し離して示している。図4（b）には、異なる方法で角速度比を計算するときに利用できる瞬間速度ベクトルを示している。

遊星歯車軸の摩擦損失はないと仮定しているので、

\[F₁ = F_{s₁₀} \]

\[F₂ = F_{s₁₀}(R₄-R₃)/(R₄-R₀) \]

(13)

\[F₃ = F_{s₁₀} \]

Fig. 3 Gear drive (2) for speed increase

(a) Forces on gears (b) Speed vectors

Fig. 4 Gear drive (3) for speed reduction
内歯車に作用する円周力 F_S と F_S は、かみあい部の摩擦損失を考慮して求めなければならない。固定内歯車は、その固定を解除すれば被動歯車として超低速で回転させることができるので、無限に遅い速度で回転する被動歯車と同じであるが、もし固定内歯車に作用する円周力 $F_S = F_{2in}$ は、遊星歯車に作用する円周力 $F_{2m} = E_{2sm}$ よりも必ず小さくなる。この境界条件は、計算式の誘導に使用する動力の流れが実際のもと異ならないようにするために重要な条件となる。

図 5 は、差動遊星歯車機構 (3) の遊星歯車のキャリオを、反時計方向に θ_{ax} だけ回転させたときの遊星歯車と内歯車の回転角度などを示している。固定内歯車のピッチ円上での円周力の移動距離は $R_b \theta_{ax}$ となる。また、出力軸の大内歯車は時計方向に θ_{ax} だけ回転するので、この内歯車のピッチ円上での円周力の移動距離は $R_b (|\theta_{ax}| + \theta_{ax})$ となる。したがって、固定内歯車と小遊星歯車の歯面間の動力損失 ΔL_{ax} および大遊星歯車と出力軸の内歯車の歯面間の動力損失 ΔL_{ax} はラックとビンオンを用いた差動歯車機構の場合と同じように計算できる。

$$\begin{align*}
\Delta L_{ax} &= F_{2in} R_b \theta_{ax} (1 - \eta_{ax}) \quad (15) \\
\Delta L_{ax} &= F_{2in} R_b \theta_{ax} (1 - \eta_{ax}) \quad (16) \\
差動歯車機構 (3) の理論効率は次式で示される。 \\
\eta &= 1 - \frac{\Delta L_{ax} + \Delta L_{ax}}{\Delta L_{ax}} = 1 - \frac{R_b (2 - \eta_{ax} - \eta_{ax})}{R_b [1 - ((R_b/R_a)]}
\end{align*}$$

ただし、計算式を簡単にするため、図 5 から計算した式 (18) で示される回転角度の関係を利用した。

$$|\theta_{ax}| = \theta_{ax} (R_b/R_a) (R_b - R_a)/R_b \quad (18)$$

4・2 増速効率の計算式の誘導 図 6 は差動遊星歯車機構 (4) の大内歯車を駆動歯車として、反時計方向に回転させた場合の円周力を示す。齒面間の損失のない場合は、各歯車に作用する円周力の大きさは、減速の場合とまったく同じであるが、損失のある場合はかなり異なる。

駆動歯車 (大内歯車) と遊星歯車の歯面間に生ずる動力損失 ΔL_{ax} は円周力がピッチ円上で動いた距離 $R_b (|\theta_{ax}| + \theta_{ax})$ に円周力と損失率を乘じて求められる。また、計算式を簡単にするために必要な等価効率 η_{ax} は、式 (19) で示される損失 ΔL_{ax} を出力軸の内歯車の有効回転角度 θ_{ax} のみで式 (20) のように表して、ΔL_{ax} に等しいとおけば、計算できる。計算結果は、式 (21) で示される。

$$\begin{align*}
\Delta L_{ax} &= F_{2in} R_b (|\theta_{ax}| + \theta_{ax}) (1 - \eta_{ax}) \quad (19) \\
\Delta L_{ax} &= F_{2in} R_b (|\theta_{ax}| - \eta_{ax}) \quad (20) \\
\eta_{ax} &= \frac{(|\theta_{ax}| + \theta_{ax}) \eta_{ax} - \theta_{ax}}{\theta_{ax}} = (1 - C_b) \eta_{ax} + C_b
\end{align*}$$

ただし、

$$C_b = \frac{|\theta_{ax}|}{\theta_{ax}}$$

である。θ_{ax} と θ_{ax} をキャリオと大内歯車の単位時間当たりの回転角度とすれば、$C_b = \frac{|\omega_{ax}|}{\omega_{ax}}$ (角速度比) と同じものであるので、図 6 の速度ベクトル図からも計算できる。なお、式 (21) は、ラックとビンオンを用いた差動歯車機構 (2) において得られた等価効率の式と同じ形になっていることがある。

固定内歯車と遊星歯車の歯面間の摩擦損失 ΔL_{ax} は、式 (22) で計算できるので、図 6 の差動遊星歯車機構 (増速) の理論効率は、式 (23) で示される。

$$\begin{align*}
\Delta L_{ax} &= F_{2in} R_b \theta_{ax} (1 - \eta_{ax}) \quad (22) \\
\eta &= 1 - \frac{\Delta L_{ax} + \Delta L_{ax}}{\Delta L_{ax}} = 1 - \frac{R_b R_b C_b \eta_{ax}(1 - \eta_{ax})}{(1 - C_b)(1 - \eta_{ax})}
\end{align*}$$

5. 動力の重ね合わせによる

効率計算式的誘導

遊星歯車機構の理論効率の計算式的誘導に、絶対座

--- 308 ---
標軸系（地蔵に固定された座標軸）を用いても、相対座標軸系（遊星歯車のキャリアと同じ角速度で回転する回転座標軸）を用いても、同じ結果が得られる。また、遊星歯車機構内の動力の流れは、絶対座標軸系を用いて表しても、回転座標軸系を用いて表しても、同じとなる。

従来の計算法では、回転座標軸系を用いたときに、固定歯車から動力が流入するという実際と異なる境界条件を容認する場合があるために、大きな近似誤差が表れる場合がある。

差動歯車機構の正確な効率計算式の誘導方法は、第3章と4章で述べた。この章では、計算方法の違いによる動力の流れの違いを比較するため、「動力の重ね合わせ方法」を用いて動力の近似計算式を誘導する。

5-1 ラックとピニオンを用いる減速歯車機構
注目している歯車に作用している力の方向とこの力の作用点の動き方向が反対のときに、この歯車は駆動歯車となる、力の方向と動き方向が同じときには、この歯車は被動歯車となる。

図2に示す差動歯車機構（1）において、歯車間に関理軸動力を作用させて、摩擦がない状態で平行状態を保たせながら、機構全体を右方向にScの距離だけ動かす。キャリアからFc,nScの動力が、また下側のラックをFm,nScの動力が入力される。一方で、上側のラックからはFm,nScの動力が入力される。一方で、上側のラックからはFm,nScの動力が入力されると考えることができる。Fc,nとFm,nの関係を式（2）と（3）から求めれば、入力の合計は零[(Fm,n + Fm,n)Sc - Fm,nSc]であることがわかる。次に、キャリアを固定して、上側のラックをFm,nの力でScの距離だけ左側に押して、Fm,nScの動力を入力すれば、下側のラックはRl2Sc/Rl3の距離だけ左側に動いて、このラックから動力Fm,n(Rl3Sc/Rl2)2ηaηbに出力される。

上記のような仮想的な動きを重ね合わせれば、上側のラックは動かなかったことになり、また下側のラックが左側にSc/(Rl2 - 1)Scの距離だけ動いたことになるので、要求された運動の条件が実現される。このときの動力の重ね合わせの過程と結果を表2に示す。

なお、入力に正の記号を、出力には負の記号を付けて示している。理論効率η＝入力/(入力)は次式で示される。

\[\eta = \frac{F_m \cdot n \cdot Sc \cdot (\eta_a \cdot \eta_b \cdot R_l \cdot R_l - 1)}{I_0 - \frac{I_0}{I_0 - 1}} \] \((24) \)

ただし、

\[I_0 = R_l / R_l \]

\[\eta_a = \eta \cdot \eta_b \]

である。

5-2 ラックとピニオンを用いる増速歯車機構
図3に示す差動歯車機構（2）の円周力に注目して、動力の重ね合わせを行えば、表3が得られる。理論効率ηは次式で示される。

\[\eta = 1 - \frac{F_m \cdot n \cdot Sc \cdot [R_l / (R_l \cdot \eta_a \cdot \eta_b) - 1]}{I_0 - I_0} \] \((25) \)

ただし、

\[I_0 = R_l / R_l \]

\[\eta_a = \eta \cdot \eta_b \]

である。

5-3 内歯車とピニオンを用いる減速歯車機構
図4に示す差動歯車機構（3）において、歯車間に摩擦力がないと仮定して、理論円周力をバランスさせた状態で機構全体をGeだけ時計針方向に回転させる。このとき、小内歯車からFm,nRl,Rlの動力が入力されるが、キャリアからFm,nRl,Rlの動力が出力される。次に、キャリアを固定して小内歯車をGeの角度だけ反時計針方向に回転させる。動力の重ね合わせの過程と結果を表4に示す。

| Table 3 Process of power superposition in gear drive (2) |
|---------------|----------------|----------------|
| Carrier | Upper rack | Lower rack |
| All elements | +Fm,nS_c | -Fm,nS_l | -Fm,nS_s |
| shifted by +S_c | +Fm,nS_s | -Fm,nS_s | -Fm,nS_s |
| Upper rack | 0 | +Fm,nS_s | -Fm,nS_s |
| shifted by -S_c | -Fm,nS_s | +Fm,nS_s | -Fm,nS_s |
| Sum | +Fm,nS_s | 0 | +Fm,nS_s |

| Table 4 Process of power superposition in gear drive (3) |
|---------------|----------------|----------------|
| Carrier | Smaller ring gear | Larger ring gear |
| All elements | +Fm,nR_l,R_l, θ_a | -Fm,nR_l,R_l, θ_a |
| rotated by +θ_a | +Fm,nR_l,R_l, θ_a |
| Smaller ring gear | 0 | -Fm,nR_l,R_l, θ_a |
| rotated by -θ_a | 0 | -Fm,nR_l,R_l, θ_a |
| Sum | +Fm,nR_l,R_l, θ_a | 0 | -Fm,nR_l,R_l, θ_a |
したがって、理論効率は次式で示される。
\[
\eta = \frac{F_{\text{in}}R_{t}R_{c}}{(F_{\text{in}}R_{t}R_{c})_{(R_{t}/R_{c})-1}}
\]
\[
= 1 - \frac{AL_{11} + AL_{10}}{F_{\text{in}}R_{t}R_{c}} = \frac{I_{o} - \eta_{o}}{I_{o} - \eta_{o}} \tag{26}
\]

\[
AL_{11} = F_{\text{in}}R_{t}R_{c}l_{0}(1/\eta_{o} - 1)
\]

\[
AL_{10} = F_{\text{in}}R_{t}R_{c}l_{0}(1/\eta_{o} - 1)
\]

ただし、
\[
I_{o} = (R_{t}/R_{c})(R_{t}/R_{c})
\]

\[
= \eta_{o} \tag{27}
\]

とする。

式(26)は、歯数比 \(I_{o} \) の内容が異なるだけで、式の形はピニオンとラックを用いた場合の式(24)と同じである。

5.4 内歯車とピニオンを用いる增速歯車機構
図6に示す差動歯車機構(4)において、動力の重ね合わせを行えば、增速効率を示す次式が得られる。
\[
\eta = \frac{F_{\text{in}}R_{c}R_{t}c}{(F_{\text{in}}R_{c}R_{t}c)_{(1/\eta_{o} - 1)}}
\]

\[
= \frac{F_{\text{in}}R_{c}R_{t}c}{(I_{o} - \eta_{o})} \tag{27}
\]

\[
AL_{11} = F_{\text{in}}R_{c}R_{t}c(1/\eta_{o} - 1)
\]

\[
AL_{10} = F_{\text{in}}R_{c}R_{t}c(1/\eta_{o} - 1)
\]

ただし、
\[
I_{o} = (R_{t}/R_{c})(R_{t}/R_{c})
\]

\[
= \eta_{o} \tag{27}
\]

である。式(27)は、歯数比 \(I_{o} \) の内容が異なるだけで、式の形はピニオンとラックを用いた場合の式(25)と同じである。

6. 差動歯車機構における動力の流れ

差動歯車機構には、外部から加えられた動力よりも大きい動力の流れが機構の内部に存在する場合同であり、上記のように示すことができる。差動歯車機構内の動力の流れ、速度には解明できないが、動力の計算式の誘導は正確な動力の流れに無関係である場合には、計算結果が誤差が生じる。したがって、代表例として、内歯車とピニオンを用いる差動歯車機構の動力の流れについて説明する。

6.1 減速の場合
従来の計算法の中で、現在でもよく使用されている、モーメントバランス法を用いた場合の動力の流れは明らかにする。図4に示す差動歯車機構(3)において、キャリアを駆動して減速する場合の動力計算式は次式で示される。
6-2 増速の場合

図6に示す差動歯車機構（4）において、大内歯車を駆動して增速する場合の効率を従来の三モーメントバランス法で計算した結果は次式で示されている（19）。

\[
\eta = \frac{M_3 (\alpha_{CS} - 1)}{M_3 \alpha} \tag{30}
\]

ただし、\(M_3, M_4 \) および \(\alpha_{CS} \) は、それぞれキャリアに働くモーメント、大内歯車に働くモーメントと角速度およびキャリアの角度である。\(\alpha = (Z_3/Z_2) (Z_4/Z_1) \) は歯数比を示す。

固定内歯車に働くモーメントは、\(M_3 = M_3 \alpha \alpha_{CS} \) で示されている。このモーメントの関係、および角速度の関係 \(|\omega_{CS}| = (\alpha - 1) \alpha_{CS} \) を利用すれば、式（30）は式（31）のように変形できる。

\[
\eta = \frac{M_3 (\alpha_{CS} - M_4 \alpha_{CS})}{M_3 \alpha_{CS}} \frac{E_3 - E_4}{E_3 - E_4} = 1 - \frac{\Delta L_{16} + \Delta L_{16}}{(M_3 - M_3) \alpha_{CS}} \tag{31}
\]

\[
\Delta L_{16} = M_3 \alpha_{CS} \alpha (1 - \eta_{CS})
\]

\[
\Delta L_{16} = M_3 \alpha_{CS} \alpha (1 - \eta_{CS})
\]

ただし、

\[
\eta_{CS} = \eta_{CS} \alpha_{CS}
\]

\[
E_3 = M_3 \alpha_{CS} \alpha
\]

\[
E_4 = M_3 \alpha_{CS} \alpha
\]

である。上記の考察で明らかにされた動力の流れを図8(a)に示す。

動力の重ね合わせ法で使用された動力の流れは図8(b)に示す。正確な理論効率の計算に用いた動力の流れは、図8(c)に示すように、実際の動力の流れと一致して、また実際の境界条件も満たしている。

7. 数値計算例と考察

7-1 数値計算例

基準効率を2種類変化させた場合の理論効率の数値計算例を表5に示す。本論文で明らかにした正確な計算式および「動力の重ね合わせ法」を用いた近似式のいずれも用いても、増速効率のほうが減速効率よりも高くになっている。なお、歯面間の基準効率は、代表的な摩擦係数 \(\mu = 0.06 - 0.09 \) から推定される代表的な値 0.98～0.995 の中から選んでい る。

7-2 考察

従来の計算式を用いれば、減速効率のほうが増速効率よりも高くなっている。また、動力の重ね合わせ法による近似計算式のほうが、三モーメントバランス法による近似計算式よりも近似度が高いことがわかる。

従来の三モーメントバランス法で用いられた動力の流れは、キャリアと同じ角速度で回転する回転座標系を用いて、推定された仮想の動力の流れを利用して図7の動力 \(E_1 \) および図8の \(E_2 \) を求めている。減速の場合には、固定内歯車を駆動歯車に仮定しているので、小内歯車（固定歯車）に作用する円周力が理論値よりも大きくなっている。このため、計算式の誘導に使用された動力の流れが、実際のものとは著しく異なるようになっている。これが増速効率のほうが減速効率よりも低くなるという結果を与えるおもな原因である。

8. 結論

代表的2種類の差動歯車機構の理論効率を正確に計算する式を従来の計算方法を用いないで、力学の基礎理論のみを用いて誘導して次の結果を得た。

（1）ラックとピニオンを用いた差動歯車機構および内歯車とピニオンを用いた遊星差動歯車機構において、減速効率のほうが常に増速効率よりも低くなる。

（2）この結果は、従来の計算式による結果と完全に逆となっている。

（3）従来の計算式を用いた場合に、減速効率のほうが増速効率よりも高くなる理由を明らかにするた
め、計算式の誘導に利用されている動力の流れを解明して、それが実際のものとかなり異なることを示した。

(4) 本研究で明らかにした「動力の重ね合わせ法」で利用する動力の流れは、従来の計算式の場合よりも、実際のものに近いので、近似誤差も少なく、増速効率のほうが減速効率よりも高くなるという結果を与える。

(5) 数値計算例で、従来の計算式を用いた場合に生ずる理論効率の計算誤差の程度を明らかにした。

文 献

(2) 石橋彰・細田光二・権田茂, 遠星歯車と差動遠星歯車の動力伝達効率の計算式 (第 1 報), 代表的歯車装置に対する正確な計算式の誘導, 機論, 59-554, C (1992), 3075-3081.

(4) 両角宗昭, 遠星歯車と差動歯車の理論と設計計算法, (1989), 22, 木村工業新聞社

(6) 石橋彰・細田光二・權田茂, 遠星歯車と差動遠星歯車の動力伝達効率の計算式 (第 1 報, 代表的歯車装置に対する正確な計算式の誘導)に関する誌上討論, 機論, 59-560, C (1993), 1328-1329.

(7) 野村秀一, 初等力学, (1944), 98, 群馬館