植物のリズム運動に関する研究*
（試作 3 次元運動測定システムによる葉と根を対象としたリズム現象の測定）

三輪 敬之*1、山下 智輝*2

Rhythmic Motions of Plants
(Measurement of Rhythms in Leaves and Roots Using the Newly Developed Measuring System of 3 Dimensional Motions of Plant Organs)

Yoshiyuki MIWA and Tomoki YAMASHITA

In order to investigate mutual relationships between rhythmic motions of plant organs, we developed a new measuring system, which can automatically record 3 dimensional motions of two plant organs. To detect the position of a tip of an organ without actual contact, we applied image processing to this system. In this system, video camera positioners, which can be controlled in the horizontal and vertical directions using a computer, enable continuous focus on plant organs as they grow. As a result, we were able to determine some relationships between rhythmic motions of a main root and a lateral root, and rhythmic motions of a root and a leaf, using this system. In addition, we found the possibility that rhythmic motions of roots took part in sensing the obstacle and communicating with other plants.

Key Words: Biomechanics, Bio Motion, Image Processing, Rhythm, Plant Organ, Binsystem, Growth Movement, Automatic Measurement, Environmental Response

1. 結 言
昆虫の歩行、鳥の飛翔、魚の遊泳など、生物は状況に応じたリズム運動をそれぞれの構造要素が自律的に発生す
ることにより、外界の変化に柔軟に対応しているといわれている（1）（2）。高等生物の器官運動（3）（4）においては、
長期間の周期性リズムが存在することが知られ、よく知っているものの、環境条件や形態形成などにみられる個
々の器官の振る舞いをリズム的に観察し、計測した報告はこれまでほとんど見当たらなかった（5）。
しかしながら、様々な環境の変化を伴う、植物の根や葉が植物の手足のように協調的に振る舞うのか、それと
もとに別々に無関係に振る舞うのかを明らかにするには、植物の生命情報ネットワークや情報伝達系に
関する新たな知見をもたらす可能性がある。ここでは、植物の外観現象と運動の関連性を明らかにする
上でも重要な意味を持つと筆者らは考えている。さらに、動物と異なり、脳や神経系、感覚器官を持たない
植物がいかにしてリズムを創っているのか、その形成メカニズムも極めて興味深い問題である（6）。
そこで本研究では、上述したような研究を遂行する際の必要手段として、先ずは、植物体全体にわたっ
て複数の器官を任意に選択することができる、個々の運動を様々な環境条件下長時間連続計測できる計測シ
ステムの開発を行った。さらに、試作システムを用いて、根や葉の器官が示すリズム運動とその関係性等につ
いて現象論的な観点から調べたので、以下に報告する。

2. 試作システムの構成
植物器官の自律的な動きは微小であり、対象物に機械的負荷が加わるとその運動が観測されるため非接触
での計測が必要となる。そこで、対象器官を CCD カメラで取り込み、それに画像処理を施し位置検出する
方法を採用した。また、図 1 に示すように計測対象を
取り囲むように CCD カメラを 4 台配置し、そのうち 1
器官につき隣り合った 2 台の CCD カメラを用いて、
器官先端部の画像を垂直 2 方向から取り込むことによ
って、2つの器官の 3 次元的な動きを同時に記録する
こととした。
試作システムの構成を図 2 に示す。リズム運動を精
植物のリズム運動に関する研究

Fig.1 Appearance of the system

Fig.2 Constitution of the system

Fig.3 Structure of the camera positioner

植物の生長と環境情報の関係を調べるため、画像処理による誤認識をさせるため、外界からの影響をできる限り遮断するとともに、光環境を設定できる環境ボックスを試作した。本装置の方法は650×850×850mmであるが、ボックス内の照明には蛍光灯を使用しているが、長期間の照明により生長が上昇することを考慮し、ボックスの両側面にDCファンを設置するとともに恒温恒湿制御機に接続してある。また全側面に扇をつけた。

実験作業を容易にした、恒温状態における画像人力は、器官の背後から月光程度の微弱光（約10°1x）で影をつくり、それを取り込む方法を探った。光源は18W電球を使用し、可変電源に接続して光量を調節する。

図4、図5に器官先端部の位置検出過程を示す。本システムでは発生直後の緊密な器官先端部を捉えやすくするため、植物器官の画像に細密化処理を施すことにより、器官先端部を検出している。まず、初期設定時にCCDカメラの画像を入力し、8段階級値を示す。その後しきい値を入力し、画像全体（256×256画素）について2値化処理を施す。この場合、安定した細密化画像を得るためには、しきい値の決定が重要となる。そこで、しきい値入力の効果を上げるために、図4(a)に示すようにマウスカーソル先端部付近の画像の手足を拡大表示し、マウスで任意の点の画像の手足を探りながら、適当なしきい値を設定する方法を考案した。次に、2値化画像についてノイズ除去のため枠内の画像のみを拡張、収縮処理を施し、さらに細密化処理を行う。その際、一連の処理の高速化を図るため、マウスにより器官先端部周辺の処理領域枠を指定し、計数中はその枠内のみを処理することにした。これにより平均1~2secで処理を行うことが可能となり、画像全体で処理した場合に比べ約10倍の高速化が図れた。最後に、枠内で画像の連続度から先端
植物のリズム運動に関する研究

Fig.4 Process of setting a measuring point

(a) Following a frame after an organ

(b) Extracting, contracting and thinning within a frame

(c) Searching for a tip point

Fig.5 Process of detecting the tip of an organ

交点の特徴点抽出を行う。マウスで特徴点を指定しその座標を(X,Y)とした。ここでは、座標の原点は画像左上とし、水平方向をX、鉛直方向をZと設定している。同様に別の方向に設置したCCDカメラの画像を処理し、座標(Y,Z)を求める。両者の結果から器官前端位置の3次元座標(X,Y,Z)が求められる。計測段階では、処理枠を常に器官の動きに追従させるため、図5(a)に示すように処理枠の中心が前回得られた器官位置座標に一致するために枠を移動する。次に、枠内の中それぞれの処理を施して前端位置を検出し、

図5に器官の生長に合わせてカメラ移動させる処理過程を示す。まず、処理枠が器官先端部の動きに対応して大きく移動した際に同図中の破線部に触れると、器官先端部が視野を中心に動くようにカメラを約2mm移動させる。それに伴い処理枠を中心方向に位置補正し、さらに枠内の画像を取り込み器官先端位置を検出し、座標を補正する。その後は通常の処理に戻る。以上の処理により、2つの器官に関して、最小1min間隔で計測を行うことが可能となった。

3. 実験方法

供試材としてインゲン、エンドウなどのマメ科植物を用いた。これらは種子から発芽させ、その後、成長したのち、3-4cmの長さに成長したのち、被覆材のチャンバーに挿入した後、垂直下方へ向くよう固定した。
4. 実験結果

4・1 根のリズム運動について まず、根のリズム運動の発現時期について検討するため、発根直後のエンドウの根先端部の軌跡を、発根後2日目の先端の軌跡を調べた。図7に結果を示す。発根直後の根にはリズム運動はほとんど認められず、2日目以降より約2時間周期でリズミックな振幅が認められ、発根とともに振幅が増大していくことを観察した。したがって、根のリズム運動は根の発生と同時に形成されるのではないか、発生に伴い形成されると考えられる。この結果は、2日目以降の生長過程において根先端部の根冠部を切除去すると、振幅が低下しリズムが消滅していく現象と密接な関係があるように思われる。すなわち、根の発生直後に根先端部において、リズムを形成するのに必要な機能分化が根冠部でまだ十分に行われていないことが考えられる。

図8は、発根後6日目のエンドウにおける主根と側根の先端部の軌跡を同時に計測した結果である。このような計測は水記録システムにより容易に可能となった。同図において、主根は振幅が小さくなっているものの、約2時間周期でリズム運動している。また、側根は主根の約1/2の周期、約2倍の振幅でリズム運動しているのが分かる。したがって、これはそれぞれの根が周期を変化することなく、振幅を一定としたリズム運動を同時に行っていることを示すものである。

そのため、両者に示すリズム運動に関する相関があるのか否かは極めて興味深い問題である。そこで、この問題について検討するために、土壌の状況を観察し、根の先端部を切除去して、根の振動の活動を引き続き観察した。その結果を図9に示す。すなわち、側根において振幅が低下しているが、これは前述したように根冠部のリズムの形成に関わっているためと考えられる。一方、主根のリズム運動は側根先端部の切除去に伴い、活発化し振幅が増大する傾向を示した。このことは、両者のリズムに相関的な関係があることを示唆するものである。

図10は、3次元な観察によって、根の先端部より5mm近辺に障害物を置いて、発根を観察した。その結果、根の振動が抑制される傾向が観察された。このことは、根のリズム運動を操作する情報が存在する可能性が考えられる。次に、環境情報として、根の先端部より1.5mm付近に障害物を置いて発根を観察した。この結果、根の振動が抑制される傾向が観察された。このことは、根のリズム運動を操作する情報が存在する可能性が考えられる。
植物のリズム運動に関する研究

Fig.11 Rhythmic motions of two roots
(Setting roots closely)

Fig.12 Rhythmic motions of two roots
(After removing a root A)

Fig.13 Rhythmic motions of a leaf

Fig.14 Rhythmic motions of two leaves

果の一例を図10に示す。すなわち、根は障害物に接近するに伴い、リズム振幅を増大させ、結果として障害物を避けるように屈曲していく。また、発根後3日目のエンドウ2個体を約2mmの距離に接近させて設置したときの根先端部の挙動について調べた。その結果、図11に示すように、ほぼ同期で位相差を伴い、お互いが動かないようリズム運動を行っていることが分かった。その後、個体Aをチャンバーから撤去して、Bのみの挙動を調べたところ、図12に示すように、以前とは別の方針にリズミックな生長運動を行った。以上の結果から、リズム運動は環境を感じ知るためのアンテナとしての役割を果たしている可能性があるばかりで
植物のリズム運動に関する研究

Fig.15 Rhythmic motions of a leaf and a root

なく、根相互間のコミュニケーションにも関わってい
ることが想像される。

4.2 葉のリズム運動について インゲンの第1葉
の運動に伴う先端部の位置変化を計測した結果を図13
に示す。このように従来から知られている一日性リズ
ムを伴った上下運動に重複して、根のリズム周期に近
い短周期のリズム運動が存在する。さらに、水準方向
にもリズムスケールに運動しており、立体的にくねりなが
ら運動していることを、本システムにより初めて見
出した。また、はは同じ高さにある2つの葉の先端部
の挙動を調べた結果の一例を図14に
示す。それぞれの葉の運動において相関が見られてい
たり、反転したりする現象が認められた。これより、
根の場合と同様、葉のリズム運動においても、それぞ
れが無関係に舞いながら、一定の位相関係
が存在する可能性があると考えられる。

4.3 根と葉のリズム運動について 本システムは
根と葉の運動を同時に計測できる。そこで、地上部の
根と地下部の根の関係について調べるため、発根後10
11目的エンドウの主根と先端葉の先端部軌跡を調べた。
結果を図15に示す。この場合、根は振幅が小さいもの
のリズム運動を行っており、一方、葉も根と同様に約
2時間周期でリズミックな動きをしていることが認
められた。これは、根と葉のリズム運動において相関
があることを示唆するものといえよう。

上述した一連の実験結果をまとめるとき、葉、根とも
にその運動には周期1〜2時間程度のリズムが存在し、
それぞれの器官が状況に応じて調調的に舞いなが
るようにならされる。仮にそうであるとするならば、
動物における神経オッショライタの11ような伝達系が
存在する可能性があり、植物の場合、それに替わる有
力なメカニズムとして筆者らは細胞内圧変化が関わ
っているのではないかと考えている。

5. 結言

本研究をまとめると以下のようになる。

(1) 高等植物の根や葉などの器官を対象とし、任
何の2つの器官が示すリズム運動を長時間自動的に調
べられる計測システムを開発した。

(2) 試作システムを用いて、マメ科植物の主根と
側根、2枚の葉、主根と葉などが示す運動について計
測したところ、いずれも周期1〜2時間程度のリズムが
同時に観察され、個々の器官のリズム運動に相関が存
在する可能性を示した。

(3) エンドウの主根の生長方向に障害物を設置し
たところ、根はリズム振幅を増大させながら障害物を
避けた。また、エンドウの主根を2本接近させた場合、
両者のリズム運動に位相関係が認められた。しかっ
て、リズム運動が外周の感知や個体間のコミュニケーションに関わっている可能性が考えられる。

最後に、本研究を遂行するにあたり、多大なる協力
をいただいた。当時卒論学生北村裕介君（現富士ゼロ
ックス）に深甚なる感謝の意を表する

文献

(1) 鈴木良郎 小生情報システム編（1991）、113-117、朝倉書店。
(2) Strogatz S.H and Stewart I. （阿部賢三訳）、生物にみられる
リズムの発現現象、日経サイエンス、247（1994）、58-63。
(3) Darwin C.（高橋照訳）、植物の運動力（1987）、207、森北出版。
(4) 石川秀夫、マメ科植物根の運動性（1989）、29-33。
(5) 例えば、中島秀明、環境応答（新光堂出版）（1991）、177-190。
朝倉書店。
(6) 健山直暦、二輪異なる、根茎による根の力学的特性、計測システ
ムの解析、生物情報誌、217-219。（1989）。217-219。
(7) 三輪章之、山野智暦、構造体におけるリズム運動について、
第4回バイオエンジニアリング部門学術講演会講演論文集 No.92
-64(1992-7)、13-15。

—192—