ねじ締結体のゆるみ機構の解析とゆるみ試験法の開発*

佐瀬直樹*1, 西岡輝*2
古賀進一*3, 藤井洋*4

Analysis of Screw Fastener Loosening and Development of Evaluation Method

Naoki SASE, Kagayaki NISHIOKA, Shinichi KOGA and Hiroshi FUJII

The inherent fault of screw fasteners is that they loosen. Loosening occurs most rapidly when vibration is applied at right angles to the bolt axis. In this paper, the mechanisms of loosening are discussed. A new loosening test method, which is designed based on the mechanism of loosening, is proposed. This method was employed to evaluate the claims of some supposedly antiloosening nuts and parts. The conclusions are as follows. (1) There are two main causes of loosening. The first is torsion of the bolt due to slipping at the clamped threaded area. The second is the release of torsion during the slipping process at the bottom surface of the nut. (2) The method is useful in analyzing the mechanism of loosening, and also in evaluating the ability to prevent loosening. (3) Some supposedly antiloosening nuts and parts are effective only under limited conditions.

Key Words: Screw Fastener, Loosening, Loosening Mechanism, Loosening Test, Antiloosening

1. 緒 言

ねじの歴史は非常に古い。それゆえねじ締結体は技術の進歩した現代においても、使用頻度が非常に高い重要な機械要素の一つである。それにもかかわらずねじのゆるみに起因するトラブルが絶えなければならない。ゆるみの原因究明、ゆるみ特性の把握が重要な課題となっている。

本研究は、ねじ締結体の軸直角方向の変位を受ける場合の締結体各部の運動を測定し、ゆるみ機構を解明しようとするものである。また、ねじのゆるみによるトラブルを防止するためには、各種ゆるみ止め部品の評価ができる簡単な試験方法の開発が必要である。そこでゆるみ機構の解析結果に基づきゆるみの発生、進行の抑止効果を評価できる試験方法を提案する。そしてこの試験方法により、市販のゆるみ止め部品のゆるみ抑止効果を調べた結果を報告する。

2. 軸直角方向挙動ゆるみ試験機

ゆるみ試験の目的は
① ゆるみ機構の解明
② ゆるみ抑止効果の評価
③ 設計の適否、適否の判断
である。これらの目的のためにゆるみ試験に要求される性能は以下のようなである。

① 短時間で通常のねじをゆるませられること
② 実際の使用状況にかかわらずパラメータの変化を伴わないこと
③ 試験結果に再現性のあること

ねじ部分の特性の違いが明確に現れるように試験方法を上記の目的を満たすものに、これまでに未発表の技術をもとに、本研究は Presented by the authors at a conference. The results of this study have been published in a peer-reviewed journal. The authors have also applied for a patent on the proposed method of loosening evaluation. The proposed method was found to be effective in predicting the loosening behavior of fasteners under specific conditions.
Table 1 Features of loosening tests

<table>
<thead>
<tr>
<th>Direction of load</th>
<th>Type of load</th>
<th>Features of loosening test results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial direction of the bolt</td>
<td>Vibration</td>
<td>Difficult to loosen</td>
</tr>
<tr>
<td></td>
<td>Impacts</td>
<td>Very slow progress of loosening Poor reproducibility</td>
</tr>
<tr>
<td>Right angle to the center line of the bolt</td>
<td>Junker’s type</td>
<td>Certainly loosen High reproducibility</td>
</tr>
<tr>
<td></td>
<td>Vibration</td>
<td>Certainly loosen High reproducibility</td>
</tr>
<tr>
<td></td>
<td>Constant displacement (proposed)</td>
<td>Certainly loosen High reproducibility</td>
</tr>
<tr>
<td></td>
<td>Increasing force (accelerator)</td>
<td>Certainly loosen High reproducibility</td>
</tr>
<tr>
<td></td>
<td>Impacts</td>
<td>Difficult to loosen</td>
</tr>
<tr>
<td>Tangential to the center line</td>
<td>Vibration</td>
<td>Difficult to loosen</td>
</tr>
</tbody>
</table>

Table 2 Functions of loosening device

<table>
<thead>
<tr>
<th>Factors</th>
<th>Variable range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude</td>
<td>0 mm ~ 0.4 mm</td>
</tr>
<tr>
<td>Frequency</td>
<td>0.3 Hz ~ 10 Hz</td>
</tr>
</tbody>
</table>

Fig. 2 Measuring points

Fig. 1 Displacement based loosening device

本測定機は、機構が単純であり、変位量の制御が容易にできる。そして試験中に軸力が低下しても振動板の振幅は全振幅で約50μmを変動するだけで、ほぼ一定の振幅で試験が可能である。振動振幅および振動数の可変範囲を図2に示す。試験はM8ボルト、強度区分10T相当で行った。締結長さは27mmとし、また、試験時間の短縮と摩擦状態の安定化のため、ねじ部と座面には二硫化モリブデンを塗布した。

3. ねじのゆるみ機構

振動によりゆるみが進行中の部品の変位、回転角を同時に測定した結果を図3.4に示す。試験ボルトはM8並目ねじ、振動振幅は0.4mmである。図4中の相対回転角θは、θa、θbにより算出されるものである。ボルトがゆるみ方向に回転するとθaは負方向に変化する。逆にナットがゆるみ方向に回転するとθbは正方向に変化する。図3中のθa、θb、ナットは振動板上を1周期に2回回転することがわかる。そしてこの滑りが始まるとき図4中のθa、θb、θcからわかるようにナットはボルトとともにナットのゆるみ方向に回転する。その他の期間ではナットの曲転運動をしない。これに対してボルトは、ナットが振動板上を滑りはじめる直前に単独でボルトのゆるみ方向に回転する。したがってボルトとナットは振動板一周期に2回θaが示すように相対回転し、ゆるみが進行していく。
以上の測定結果から推測されるゆるみの発生機構は次のようである。振動板の変位によりボルトは傾き、
軸力は増加する。このときかみあいねじ部の圧力側フランクでは相対滑りが生じる。この滑りの方向は、リード角が存在するためフランクにそった方向だけでなくまき線にそった方向にも生じる。同様のトルクはナット座面にも作用するがモーメントの腕がねじ部に比べて大きいため座面では滑りが発生しない。したがってボルトは単独で回転し、ねじれが発生する。蓄えられたねじれはナット負荷座面と振動板の相対滑りをきっかけに、ボルトがナットを押して回転することによって解放される。これがゆるみの発生機構と考えられる。この結果は山本、加勢の実験結果とほぼ一致している。

また、締結直後には大きなゆるみが発生することが知られている。この初期段階におけるボルト、ナットの挙動についても調べた。その結果、振動開始直後はボルトがねじれを蓄えることなく、ナットと一体となってナットのゆるみ方向に回転しはじめることがわかった。これはボルトが締結時のトルクにより大きなくじられるため、締結直後のボルト・ナットは特に不安定な締結状態にあると考えられる。したがって締結直後はわずかな状態の変化により回転するゆるみが生じ、さらにねじ面や座面の変化もともなうので大きなくじられる考えられる。

4. 軸直角振動ゆるみ試験

3章で見たように、ねじのゆるみのともなう生じ原因はボルトのねじれと座面の滑りである。したがってこのうちのどちらか一方でも防止できればゆるみの発生は防止できると考えられる。ゆるみ試験ではこれらの防止性能の違いが試験結果に反映され、締結体の評価ができなければならず、そのために本試験機において試験条件の違いがゆるみに与える影響を把握しておく必要がある。そこでまず初期締結力を変化させ、座面の滑りを大きく変化させたときのゆるみのようすについて調べた。図6におけるゆるみ試験結果を図5に示す。図5から初期締結力を大きくしてもゆるみは発生し、そのゆるみ速度はほとんど変化しないことから、初期締結力の大きさと、ナットが振動板に追従できる範囲も大きく変わる。しかしナット座面が滑りを起こすと、同じようにボルトが蓄えたねじれを解放してしまうと考えられる。つまり、ナットが振動板の動きに追従し、滑りを起こすのところまで初期締結力があげられればゆるみを防止できるが、そうでなければ初期締結力によってゆるみを防止することはできないということである。

次に初期締結力を18kNと一定にし振動振幅を変化させたときの試験結果を図6に示す。図6のように振幅0.15mmを境にゆるみのものとゆるまないもののとに大きくわかった。そしてこの振幅の境界値は初期締結力にともなって変化した。このように締結力と振幅
は密接に関係してゆるみ挙動に影響を与えがちである。したがってゆるみ試験の条件設定に際しては、何とすべきかを明らかにしておく必要がある。つまり、ゆるみの発生のしにくさを調べたいのであれば振幅を変化させ境界値を求めめる。ゆるみの進行のしにくさを調べたいのであれば十分に座面が滑る振幅において締結力の低下していくようすを調べればよいことになる。

また、振動周波数の影響についても調べたが、0.3〜10 Hzの範囲でゆるみ挙動に違いは見られなかった。

5. 市販ゆるみ止め部品の評価

現在市場には、ねじのゆるみを防止できるとする部品が数多く出回っている。それらは果たして有効なものであろうか。本章では本研究で開発したゆるみ試験機を使用して、これら市販のゆるみ止め部品の耐ゆるみ特性を評価した。ただし、ゆるみ止め部品のうちねじ山をつぶすようなものはすべて除外した。ねじは何度でも使え、強い締結力を与えられ、簡単に作業で締付けられることが大事な特徴であるからである。

まずリード角の小さい細目ねじについてゆるみ試験を行った。その結果を図7に示す。初期締結力16 kN、振幅0.4 mmのときのゆるみの進行を調べた結果である。図より細目ねじは並目ねじに比べゆるみ速度がかなり小さいことがわかる。しかしゆるみは確実に進行していく。そこでゆるみが進行しているときの細目ねじの各部の動きを調べた。その結果を図8、9に示す。細目ナットの振動板に対する滑りと並目ナットの場合とはほとんど違いが見られない。しかし、図9に示したボルト、ナットの回転量は並目ねじの場合に比べて非常に小さい。細目ねじはリード角が小さいためボルトに蓄えられるねじれが小さくなり、並目ねじと同じように座面で滑りをおこしても、解放されるねじれは小さくなると考えられる。したがって図5のようにゆるみ速度は並目に比べて小さくなるものと思われる。
市販のゆるみ止め部品はそのねらいからねじ面の摩擦抵抗を増加させてゆるみを防止しようとするものと、座面の摩擦抵抗を増加させてゆるみを防止しようとするものに大別できる。それぞれのタイプのおもなものについてゆるみの進行を調べた結果を図 10 に示す。初期締結力は 16 kN、振幅 0.4 mm のときの結果である。ねじ面型のナイロンナットはわずかにゆるみ速度を低下させる効果が見られた。また締結力 5 kN 程度でゆるみの進行が止まるで脱落を防止する効果が期待できる。これに対して座面型のスプリングワッシャ、フランジナットはゆるみの進行を防止する効果がほとんどみられず、並且ナットと同程度の結果であった。

図 11, 12 にナイロンナットのゆるみが進行中の各部の動きを示す。図 11 より振動板に対するナットの動きは並目ねじの場合と同様であり、ナット座面では同じように滑りが生じていることがわかる。図 12 よりボルト、ナットの回転運動はやや不規則ではあるが並目ねじと同様の機構でゆるみが進行していると考えられる。しかしナット上部のナイロンリングがナット内でボルトが傾くのを防ぐため、かみあいねじ部でのボルトねじとナットねじ部の相対滑りが抑えられている。

Fig. 10 Loosening processes of so-called anti-loosening parts

Fig. 11 Displacements of the rocking plate and the nut in the nylon inserted nut

Fig. 12 Turning angles of the bolt and the nut in the nylon inserted nut

Fig. 13 Displacements of the rocking plate and the nut in the serrated flange nut

Fig. 14 Turning angles of the bolt and the nut in the serrated flange nut
ねじ締結体のゆるみ機構の解析とゆるみ試験法の開発

Table 3 Loosening thresholds of various fasteners when fastened by 16kN

<table>
<thead>
<tr>
<th>Screw fasteners</th>
<th>Threshold λ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cone screw</td>
<td>0.10 < λ < 0.15</td>
</tr>
<tr>
<td>Fine screw</td>
<td>0.15 < λ < 0.20</td>
</tr>
<tr>
<td>Nylon inserted nut</td>
<td>0.15</td>
</tr>
<tr>
<td>Spring washer</td>
<td>0.15</td>
</tr>
<tr>
<td>Serrated flange nut</td>
<td>0.10 < λ < 0.15</td>
</tr>
</tbody>
</table>

と考えられる。したがってボルトのねじれ量が抑制され、ゆるみ速度がやや小さくなると考えられる。

図13、14にフランジナットのゆるみが進行中の各部の動きを示す。図13よりフランジナットでは滑動板に対するナットの動きが小さくなることがある。しかし、振幅0.4mmの条件では滑りを完全には防ぐことは出来ないため、滑りを起こした瞬間に図14に示したように大きな相対回転を生じてしまう。このようにフランジナットはナットの回転を防止するのではなく、ナット座面の横滑りを防止する効果があることがわかる。

スプリングワッシャーについてもほぼ同様の結果が得られた。また、工芸製品ではしばしばスプリングワッシャーが通常のワッシャーと組み合わせて使用されている。しかし、このように組合せて使用した場合はゆるみ防止効果がまったく見られなかった。通常のワッシャーは、ボルトのねじれの防止も座面における滑りの防止もしないので、ゆるみを防止する効果をもたない。通常のワッシャーとスプリングワッシャーを組合せた場合、通常のワッシャーの座面で容易に滑りをおこしてしまうためスプリングワッシャーの効果は消減してしまう。

次にそれぞれのねじ部品のゆるみが発生する振幅の境界値（最小値）を比較してみた。初期締結力16kNにおける結果を図3に示す。スプリングワッシャー、フランジナットの境界値は並目ナットに比べ大きく、ゆるみの発生を防止する効果が見られるであろうと予想されたが、その差ははっきりと現れなかった。逆に細目ねじに若干のゆるみ発生防止効果が見られた。ナット座面における滑りは滑動板の変位だけでなく、ボルトねじれに伴うトルクの増大が大きく寄与していると考えられる。

以上のように種々の市販のゆるみ止め部品に対してゆるみ試験を行った。その結果、これらの部品もねじのゆるみ防止に対しては根本的な解決になっていないことがわかった。

6. 結論

ねじ締結体が軸直角方向の振動変位を受ける場合について、ゆるみの機構、ゆるみの主要因を調べた。

（1）ねじ締結体のゆるみは、ボルトに生じるねじれと負荷座面での滑りによるねじれの解放によって引き起こされることがかった。

（2）一定の振幅でゆるみ試験を行うことにより、ゆるみ機構の解析、ゆるみ防止性能の評価が容易に行えることを示した。

（3）この試験機により市販のゆるみ止め部品の耐ゆるみ防止性能を調べ、これらの部品はいずれもねじのゆるみを完全に制限には至っていないことを明らかにした。

文献

（2）北川敏二, ボルト・ナットのゆるみについて, 機論, 30 215 (1964), 934-939.

（3）山本晃, 機械振动によるねじのゆるみに関する研究, 機械, 43 4 (1977), 470-475.

（4）山本晃, ねじのゆるみ機構について, 機論, 41 716 (1976), 617-622.

（5）吉村一夫, 振動によるねじのゆるみ機構, 機械の研究, 27 1 (1955), 221-226.