Leakage Flow-Induced Vibrations of an Axisymmetric Body
(2nd Report, Theories and Experiments on the Stability of an Axisymmetric Body for One Degree of Freedom of Translational Motion)

Masaaki ARAI, Makoto MIYAWAKI and Kiyohiro TAJIMA

We present analytical and experimental studies on the stability of an axisymmetric body which vibrates with one degree of freedom of translational motion in a narrow annular tapered passage. The leakage models are three divergent passages and one parallel passage. For the divergent passages, the angles of the wall surface of the outer cylinder to the axial direction are negative, zero and positive. When the flow rate of water is gradually increased or decreased, the damping ratio of the system and the critical flow rate at the stability boundary are measured under conditions of the variable natural frequencies. If the angle of the wall surface is negative, it is necessary that area ratio of the exit to the inlet used in the calculation be smaller than the designed passage because the leakage flow separates from the wall surface. From the agreement between the experimental and calculated results, we conclude that the theory on the damping ratio is reasonable. The calculated results for the nondimensional critical flow rate increase linearly with for increasing natural frequency. When the flow rate is decreased, the theoretical results for the critical flow rate agree well with the experimental results.

Key Words: Vibration Coupled with Fluid Motion, Fluid Force, Stability, Self Excited Vibration, Leakage Flow, Axisymmetric Body

1. まえがき

前報（NII-Electronic Library Service）では、現状すきま流れにおける軸対称物体（以下、これを中心体と呼ぶ）が並進自由度の微小振動を振動する場合の流体力について解析した。また流体力を慣性力、減衰力および復元力に大別し、各係数の性質を角振動数の極限操作により調べるとともに、各付加係数の定義式を提示した。本報では、これら解析式に基づいて構造系を含めた系の安定性を検討し、さらに本解析式の妥当性を実験によって検証する。

すきま流れ振動に関する検証実験の従来の研究として、稲田らおよびSpurrらの報告がある。これらはすきま流れの入口、出口の面積比を変えた場合の系の安定性を流量変化によって検証しており、構造系の固有振動数を変えた場合の安定性についての報告は見受けられない。また、それらの報告の振動体は一定幅あるいは一定半径のものであり、例えば片座屈の広いビペット弁に見られるように、振動体と外筒両者をテーブ構造とした報告は見当たらない。動作流体には、藤田らを除いて空気を用いており、密度や粘度が空気より小さい大きな水を扱った報告は非常に少なく、この場合の付加係数については必ずしも明らかできない点多い。

本研究の実験したすきま流れのモデルは軸対称座標となる外筒壁面角度を正、零、負とした末広流路ならびに平行流路の4種類である。また、実験は構造系のばね定数を変えることによって固有振動数を種々に変化させ、そのときの安定性の推移を流量変化により調べるとともに、水中における中心体の自由振動波形から流量変化に対する系の減衰係数を実測し、解析式の妥当性を検討した。さらに、前述の理由から動作流体には水を用いた。

おもな記号

無次元数を表す場合は大文字記号を用いることにし、下記に示す小文字記号に対応する大文字記号もすべて無次元数を表す。ただし、式の簡略化のために用いる大文字記号は必ずしも小文字記号に対応しない。

\(A \): すきま流れ入口に対する出口の面積比

\(C_a \): 付加減衰係数

\(C_f \): 摩擦係数

\(\epsilon \): 構造系の減衰係数 \(\text{kg/s} \)

* 1995年1月5日

* 1 正員 東京農工大学理工学部（☎184 小金井市中町2 24 16）

* 2 1995年12月1日 102 東京農工大学理工学部（☎184 小金井市中町2 24 16）

* 3 正員 東京農工大学理工学部（☎184 小金井市中町2 24 16）
軸対称物体のすきま流れ振動（第2報）

$$\begin{align*}
\nu : & \text{振動数 Hz} \\
\nu' : & \text{固有振動数 Hz} \\
\beta, \gamma, \delta : & x, y, z \text{軸方向の流体力 N} \\
\gamma: & \text{周方向流速} \nu \text{に関する単位長さ当たりの体積流量} \left(= (r_2 - r_1) \nu \right) \text{m}^3 / \text{s} \\
K_0 : & \text{付加剛性係数} \\
k_0 : & \text{構造系の剛性係数 N} / \text{m} \\
2d : & \text{すきま流路} z \text{軸方向の長さ m} \\
M_0s : & \text{静止流体中の付加質量係数} \\
m_r : & \text{構造系の質量 kg} \\
p : & \text{圧力 Pa} \\
p_0, p_0 : & \text{流路入口直前, 出口直後の圧力} \text{Pa} \\
\eta : & \text{単位} \theta \text{当たりの} z \text{軸方向体積流量} \text{m}^3 / \text{(rad/s)} \\
r_{in}, r_{out} : & \text{すきま入口における中心体壁面, 外管壁面の半径 (図3参照) m} \\
r_{in}, r_{out} : & \text{すきま出口における中心体壁面, 外管壁面の半径 (図3参照) m} \\
J : & \text{微小変形量} \\
\psi_{in}, \psi_{out} : & \text{中心体と外管壁面が} z \text{軸となす角度 deg.} \\
\rho : & \text{流体の密度} \text{kg/m}^3 \\
r_{in}, r_{out} : & \text{せん断応力} \text{Pa} \\
\omega : & \text{角振動数 rad/s} \\
\omega : & \text{固有振動数 rad/s} \\
\xi_{in}, \xi_{out} : & \text{すきま流路入口, 出口の圧力損失係数} \\
\xi : & \text{減衰係数比} \\
\text{添字} : & 1 \text{中心体壁面} \\
2 : \text{外管壁面} \\
a : \text{付加係数} \\
a : \text{角振動係数} \\
o : \text{対称状態} \\
l : \text{構造系} \\
\text{上付添字} : & \text{振幅} \\
2. \text{系の安定性解析} \\
\text{並進-自己自由度系において, 構造系に流体を含めた} \\
x \text{軸方向の中心体の運動方程式は次式で与えられる。} \\
m_r \ddot{x} + c_r \dot{x} + k_r x = f_r \\
\text{微小変位} \ddot{x} \text{および微小流体力} f_r \text{は調和振動を仮定} \\
\text{しているので, 次式で与える。} \\
\Delta \ddot{x} = \ddot{x} \exp(j\omega t) \\
\Delta f_r = f_r' \exp(j\omega t) \\
\text{前報}^{33} \text{より無次元流体力} \Delta f_r \text{は次式で与えられる。} \\
\Delta F_r = \int_{\Omega} \int \left[R_{0} / | \omega | + j \int (T_{m} n) \right] \\
+ \int_{\Omega} H_{s} (R_{0} + j (T_{m} n + T_{s}) \omega X) \right] d\Omega \\
\approx (A_{r}(\Omega) \omega X) d\Omega \\
\text{ここに,} \\
\Delta F_r = \left[f_r' \rho_0 \right] \int (T_{m} n) \right] (2 \pi \rho | d \Omega) \\
\Delta \dot{X} = \Delta \dot{x} / \nu, \quad \Delta P = \Delta p / \nu \\
\Delta T_{m} \left(\nu \right) = \int (T_{m} n) \quad / \\
\Delta T_{s} \left(\nu \right) = \int (T_{s}) \quad / \\
\Omega = \omega_0, \quad t_s = \left(r_{in} - r_{out} \right) / \left(2 \omega_0 \right) \\
R_{0} - H \dot{Z} + T_{s} = \dot{r}_{in} - r_{in} \quad, \quad L_{o} - l_{in} \quad, \quad L_{o} = \left(r_{in} - r_{out} \right) / \left(2 \omega_0 \right) \\
H_{s} = \left(r_{in} - r_{out} \right) / \left(2 \omega_0 \right) \\
R_{0} = \left(r_{in} - r_{out} \right) / \left(2 \omega_0 \right) \\
\text{なお,}$
\Delta F_r = \Delta F_2 = 0 \text{であり, また,}\Delta P, \Delta T_{m} \left(\nu \right) \text{および}\Delta T_{s} \left(\nu \right) \text{はリューバール方程式を基底関数とする} \\
\text{の関数である。式(2)を} \left(\nu \right) \text{に代入し, 上式と同様に無次元化後, 付加係数}^{33} \text{を考慮すると次式を得る。} \\
\{ M_r + M_{as} \} \Omega^2 + j \{ C_r + C_{as} \} \Omega \\
+ \{ K_r + K_{as} \} \Omega = 0 \quad \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (4) \\
\text{ここに,}$
M_r = m_r / \left(2 \pi \rho | d \Omega \right) \\
C_r = c_r / \left(2 \pi \rho | d \Omega \right) \\
K_r = k_r / \left(2 \pi \rho | d \Omega \right) \\
M_{as} = \text{Im} A_r(\Omega) \Omega^2 \\
C_{as} = \text{Re} A_r(\Omega) \Omega \\
K_{as} = \text{Re} A_r(\Omega) \Omega + \text{Im} A_r(\Omega) \Omega^2 \\
\text{ただし,}$
\{ \Omega \} \text{を付加する各要素は} \Omega \text{の関数であることを表す。また,}\Omega \text{は複素変数であることから, 上式に}\Omega \\
\text{と} j \Omega \text{すなわち} \Omega = \Re(\Omega) + \Im(\Omega) \text{を代入すると,}$
\{ M_r + M_{as} \} \left[\Re(\Omega) + j \Omega \right]^2 + j \{ C_r + C_{as} \} \left[\Re(\Omega) + j \Omega \right] \\
\times \left[\Re(\Omega) + j \Omega \right] + \{ K_r + K_{as} \} \left[\Re(\Omega) + j \Omega \right] \\
\text{\text{= Re}(\Omega, \Re(\Omega)) + j \text{Im}(\Omega, \Re(\Omega)) = 0 \quad \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (5) \\
\text{ここに,}$
\text{Re}(\Omega, \Re(\Omega)) \text{は式(5)左辺の実数部}$ \\
\text{Im}(\Omega, \Re(\Omega)) \text{は式(5)左辺の虚数部}$ \\
\text{と与える。ここで式(5)を満足する} \Re(\Omega) \text{および} \Im(\Omega) \text{の解} \\
\text{を求めるために, 次式に示す評価関数} F_r \text{を定義する。} \\
F_r = \left[\Re(\Omega, \Re(\Omega)) \right]^2 + \left[\Im(\Omega, \Re(\Omega)) \right]^2 \\
\text{すなわち}\F_r \text{を最小にする} \Re(\Omega) \text{および} \Im(\Omega) \text{について最適計算を行えば,} \text{解が求まる。この計算では} \\
\text{Davidson Fletcher- Powell \text{による可変計算法35) を用い,}\F_r \text{は約} 10^{-10} \text{以下で収束するようにした。なお,}\F_r \text{の初期値は約} \\
10^{+2} \text{である。当然ながら,}\Im(\Omega) \text{が負の場合の系は動的不安定となり, 正の場合は安定となる。図10に}\Re(\Omega) \text{および} \Im(\Omega) \text{の} $
計画の一例を示す。また、図中の振動数（）を用いて次式より求める。

\[\gamma = \frac{C_r}{2M} \] \[\cdots (7) \]

図から系の安定性は流量 \(q_a \) の大きいことに支配されることがわかる。また、一端流して示す安定限界流量は \(q_r \) のみならず安定性を考慮した積分計算により求める。

なお、式（4）から構造系ならびに水中における減衰係数 \(\zeta \) と \(\omega \) はそれぞれ次式で与えられる。

\[\zeta = \frac{C_r}{2M + M_a \omega(n)} \] \[\cdots (8) \]

\[\omega = \sqrt{\frac{C_r + C_d(\omega)}{2M + M_a \omega(n)}} \] \[\cdots (9) \]

ただし、式（4）に示す付加係数 \(C_d(\omega) \) と \(K_d(\omega) \) は \(\omega \) の関係にあるので、 \(\omega = \Omega \) として計算する。

3. 実験装置および実験方法

3-1 配管設備 図1にすきま流れ実験のための配管のようすを示す。試験水は地上高19 mに設置されたオーバーフロータンクより供給され、ポンプを通過してサージタンクに入る。サージタンクより下流側はすべて3インチ管で配管されており、図1に示すフレーキルチューブは配管からテストセクションへの振動伝達を極力小さくするために設けてある。また、すきま入口直前における旋回流れを除きするようにテストセクション下流は約10 Dの直管で配管する。試験水の流量はテストセクション下流にある電磁流量計で計測し、その調整は下流側の紺絞分で行う。A部の拡大図に示す引張り力調整システムは下部に取付けてあるダイヤルの引張り力を調整するために設けてあり、また引張リラは図に示すストレインゲージで計測する。

3-2 すきま流れ実験装置 図2にすきま流れ実験装置を示す。中心体は前節に述べた引張り力調整システムに固定された2本のダイヤル（φ2 mm）によって上下に引張られている。つまり、これらが構造系のばねとなる。またダイヤルのねじが生じないように、システムの回転することなく \(\beta \) 軸方向に上下する。中心体の上端から150 mmの位置にある調整ユニットによって、ダイヤルは \(\beta \) 方向に微動調整が可能であり、下端の同じ位置にも同様のユニットがある。すなわち、これら2つのユニットによって中心体が外径と同心となるように調整する。

すきま上流と下流にある2本のガイドロッドはそれぞれ中心体に固定されており、これらによって中心体は \(\beta \) 方向に並進運動をする。上流側ガイドロッドの右側にあるスプリングは中心体に速度外乱を与えるものである。つまりスプリングの上端はソフトとし、中心体は \(\beta \) 方向に自由振動を行う。中心体の材質は耐性をできるだけ小さくするためにジュラルミンを用いている。また、すきま部におけるキャピテーションの有無は中心体の振動を観察するため外筒はアクリルで作製し、可視化する。

実験に用いたすきまモデル Type 1〜4を図3に示す。図3中によると \(m_a \) は中心体と外筒壁面が接する面とすきまの角度をそれぞれ表しており、反時計回りを正とする。表1にType 1〜4の各諸元を示す。さらに、 \(m_a \) はガイドロッドの含められた中心体の質量を表し、表1に載せていないすきま入口の外筒半径 \(2w_a \) の寸法は46.4 mmであるので、最小すきま幅は各Typeともに約1 mmである。また、 \(\beta \) 軸方向のすきま流路長さ \(2l \) の寸
法は60 mmである。表1からType 1, 2, 3はそれぞれ正、負、負としたすきま形状である。また、すきま入口に対する出口の面積比、すきま径をそれぞれ4, 10, 1.0の平行流路であり、外筒はType 1と共通である。つまり、両者はひずみを変えることによってすきまを変えてい

3-3 実験方法 図2からわかるように、中心体のx方向変位Axはギャップセンサを用いて測定す
る。上流圧力p上および下流側圧力p下はひずみ式圧力
変換器で検出し、すきま部における上流、下流の壁面
圧力p水、p水は差圧形圧力変換器で検出する。また、
ギャップセンサを含めたこれらの出力電圧はFFTア
ナライザでそれぞれ計測する。

実験方法を次に述べる。所定のすきまモデル
Type 1~4をテストセクションに取付け、引張り力調
整システムによりワイヤロープを設定値となるまで引張
る。また、引張り力は約0.3 kNを基点とし約0.3
kN刻みで最大1.8 kNまで順次増大させ、計測で6
点を設定値とする。テストセクションに水を入れる前
に、まず空気の中で中心体を自由振动させてその波形
AxをFFTで計測する。すなわち、この波形から構造
系の固有振動数fnと減衰係数ζを測定する。次に
テストセクションに水を入れ、下流側引張力を閉じて
静止水中における自由振動波形Axを同様に計測す
る。計測後、下流側引張力を次第に開き、流量が設定値
となったところで自由振動波形Axを含めて流量
2πνを変える。上流圧力p水、下流側圧力p水および外筒壁圧力p水の定常値を計測する。なお、流量は約0.1~10 m/s
刻みで順次増加させる。この過程で中心体が自励振動
状態になったら、流量の刻みを細かくして微小しのう
乱によって自励振動を行う安定限界流量を測定する。
さらに、この流量を増加し、スプリング中央のロッド
をガイドロッドに押しつけて振動を止めると同時にそれ
を離したときの測定を含む。この以上を測定を"流
量増"とする。次に同様の測定を行ながら、これと反
対に流量を漸減させていく。つまり、これが"流量減"
である。漸減過程で中心体の振動が消失するが、これ
を"流量減"の安定限界流量として測定する。

4. 実験結果と計算結果の比較

4-1 流量変化に対する減衰係数比と振動数 流
量変化に対する中心体の自由振動波形の一例を図4に
示す、図4は(a)~(f)まで特徴的な六つの波形を示
している。また、これら英字は図5のType 1に示す
印の英字と同じ対応する。図4(a)~(b)に流量
2πνを波形より求まる減衰係数ζと振動数fnをそれぞれ

<table>
<thead>
<tr>
<th>Type</th>
<th>ζ</th>
<th>ζ</th>
<th>2πν</th>
<th>2πν</th>
<th>ζ</th>
<th>ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>44.13</td>
<td>35.09</td>
<td>4.48</td>
<td>0.402</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>15</td>
<td>44.21</td>
<td>70.60</td>
<td>5.98</td>
<td>0.635</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>10</td>
<td>44.14</td>
<td>22.68</td>
<td>3.78</td>
<td>0.310</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>44.03</td>
<td>44.03</td>
<td>1.0</td>
<td>0.447</td>
</tr>
</tbody>
</table>

Fig.3 Models of leakage flow for Type 1~4

Fig.4 Vibratory waveforms of Type 1 for flow rate
図5 Type 1～3の減衰比流の変動率

図6 漏れ流の静止写真

パラメータ
- Type 1
 - 実験: $f_n = 19\text{Hz}$
 - 実験: $f_n = 27\text{Hz}$
 - 実験: $f_n = 41\text{Hz}$
- Type 2
 - 実験: $f_n = 16\text{Hz}$
 - 実験: $f_n = 22\text{Hz}$
 - 実験: $f_n = 33\text{Hz}$
- Type 3
 - 実験: $f_n = 20\text{Hz}$
 - 実験: $f_n = 29\text{Hz}$
 - 実験: $f_n = 44\text{Hz}$

図7 Type 3の漏れ流の概要図

- 外部円筒
- 中心部

平均流速 $U_c = \frac{2
\nu}{(\pi - \nu)^2}$ で与える。

Type 1～3のすべての実測値は流量の増加に伴って $
u$ の値が負となっており、この範囲で中心体は動的に不安定となる。f_n で分かれた実験、第点および破線の計算値は Type 1 と Type 2 の場合、全体的に見て実測値の凹、凸にそれぞれ良い一致を示している。一方、Type 3 の計算値は例えば第点の場合、凹凸よりもむしろ凸側に近く、その差異もかなり大きい。この原因を調べるために Type 3 に関して、すきま流れの観察を行った。図6 はケシントラップ（全開角度 2°）によるすきま流れの瞬間写真である。すきま流れは黄色の絵の具で可視化し、図6(a) に示す写真は $2\pi \nu = 0.1 \times 10^3 \text{m}^3/\text{s}$ で流量が非常に小さい場合、図6(b) は $2\pi \nu = 0.8 \times 10^3 \text{m}^3/\text{s}$ で比較的な流量の場合である。この写真から、図6(a) におけるすきま流れは外筒と中心体壁面によって形成されるすきま流れにほぼ充満して流れているが、図6(b) の場合のすきま流れは流路出口に近づくにつれて外筒壁面から遊離し、その距離も次第に大きくなっている。すなわち Type 3 の場合、流量が比較的に大きくなると、すきま流れの実質的な形状が設計流速とは異なったものとなる。図6(b) のすきま流れ写真より、図7 に二点鉤線と中心体壁面からなるすきま流路をモデル化して示す。この場合の表面比 A_r は図6(a), (b) の写真から約 3 である。また流量を(b) より増大させても A_r はだいたい 3 となる。これらの条件を用いて計算した結果
軸対称物体のすきま流れ振動（第2報）

Fig. 8 Damping ratio of Type 3 for flow rate

Fig. 9 Damping ratio of Type 4 for flow rate

Fig. 10 Frequency of flow rate

を図8に載せる。図8に示すように、3種類の計算値は
それぞれの実測値にほぼ一致する。また流量増加に伴
ってξが下下するとき、実測値は計算値を上回る傾向
にあるが、この原因の一一つとして上流圧と下流圧を含
めた定常流量体が2方向下向きに働く力すなわちス
ラストが考えられる。つまり、計算では式（9）に示す
構造系の無次元減衰係数を一定とみなししているが、
スラストの増大に伴ってガイドロッドと本体との接触
摩擦力の影響が強まり、ξが大きくなったと考え
られる。なお、以下に示す Type 3 の計算はすべて図8
の条件で行う。

以上述べたように、図5と8に示す計算値と実測値
の一致、中心体と外筒壁面角度θ₁, θ₂を種々に変
えたときの流量と減衰係数比に関する本解析式の妥当
性が確認できた。さらに、前報で示した付加質量
係数、付加減衰係数および付加剛性係数の定義式の妥
当性が明確になった。従来、実測値が動的不安定となる場
合のξは流量の増加とともに次第に小さくなって負
になると考えられてきたが、両図の実測値と計算値か
ら、流量の増加に伴って一度上昇後、下降して負にな
ることを明らかにした。またξが下降して負になると
きの流量に対するξのこう配は Type 3、Type 1、
Type 2 の順に大きくなる。したがって、流量を増加し
ていくときに不安定となる傾向は Type 2 すなわち θ₂
を正とした場合が最も強く、θ₁を負にするとき最も弱
くなる。

図9に Type 4 の場合を図5と同様に示す。ただし、
この場合の2πτ₀に対するξの実測値は他の Type と
比べて非常に大きいので、日目盛は図5の10倍と
する。図からξの実測値と計算値はほぼ一致しており、
いずれのξの場合も流量増加に対して上昇するのみ
で下降することはない。つまり Type 4 の場合には
流量増加に対して常に不安定である。3・2節に述べたよ
うに、Type 1 と 4 の外筒は共通で前者は中心体壁面
のこう配を変えることによって、L₄ = 4.48 の未広流路を
している。したがって、すきま流路を未広化すると系
は負減衰に基づく動的不安定を起こすことがわかる。

Type 1 ～ 3 の自由振動あるいは自動振動の場合の流
量変化に対する振動数ζの実測値と計算値を図10に
示す。また、これは図5に示す点線の場合に相当す
る。ただし、実測値は “流量減” の場合を表す。図中の
白抜き印は自由振動、黒抜き印は自励振動の場合を表
す。ただし、丸で囲んだ黒抜き印は外筒壁面衝突振動を
なるので、当然ながら理論値との比較はできないが、
流量に対する振動数変化の実験的な推移として図に示
す。白抜き印で示す実測値ζは流量の増加に伴って、
各 Type ともに減ずる傾向にあり、計算値と定量的
に対しても一致している。したがって、振幅が比較
的小さいときの振動数は本解析式で満足に説明できる
4.2 安定限界における無次元流量と振動数

図11にType 2の場合の“流量増”と“流量減”の安定限界流量における中心体の振動波形を示す。図11中に入すように最下段の図が“流量増”で最下段の図が“流量減”の場合である。図11から“流量増”における中心体は微小変乱から振動を開始するが、その振幅は外筒壁面衝突振動までに成長する。一方、“流量減”の場合、“流量増”の安定限界流量を減減していくと中心体の自励振動は止まらずに、まず外筒壁面より小さな振幅の持続振動を始める。さらに流量を少なくすると、振動はその振幅から減衰し、はじめて消失する。つまり、“流量減”的安定限界流量は“流量増”的それと比べて小さくなる。なお、Type 1, Type 3の場合もこれと同様な振動波形を示す。

図12に示す振動波形はほぼ一定振幅で一定周期であるから、これは非線形特性に起因する安定域ミットサイクルとなる。これと前述の“流量増”と“流量減”の振動波形から、両者の振動はミットなどの非線形特性に起因する発発現象と考えられる。

Type 1～3の場合の構造系の固有振動数ω_aに対する無次元安定限界流量q_a/q_aの実測値と計算値を図12に示す。ただし、q_aはζ_a=0.0, ω_a=100 rad/sにおける安定限界流量を表す。実測値は“流量増”と“流量減”的両者をそれぞれ。○印で表す。前述のように、印はすべてにあたり図を上回っている。図12中に示すζ_aは図5に示すように、ζ_aの値が固有振動数条件で多少異なるので、各Typeにおける6点のζ_aの平均値を表す。計算は実測値が含まれる範囲までζ_a=0.0から順次大きくして行った。

図12に示すように、点在を向対数で表示とq_a/q_aの実測値と計算値はともにω_aに対してほぼ直線的に上昇する。実測値と計算値を比べてみると、各Typeにおける印は全体的にζ_a=0より多少大きなζ_a上にある。○印はζ_a=0.0の線上にほぼ載っている。すなわちζ_aを考慮に入れると、Type 1～3までの計算値は“流量減”の安定限界流量を良好に説明しているのがわかる。従来、不安定回避対策の一つとして有界振動数の増大が経験的になされてきたが、図12に示すように本解解析式によってω_aに対する安定限界流量の定量的な推定が可能である。印と○印の差を各Typeについて比較してみるとType 3が最も大きいので、このTypeにおける発発現象は最も強い。
と考えられる。各 Type において、ξに対する q_n/q_n の変化の割合は異なっており、Type 3、Type 1、Type 2 の順に小さくなる。また、このことからも前述の流量増加時に不安定となる傾向の大きさがわかる。つまり、流量に対するξのこう配は上記の順序とは逆になる。

Type 1～3における固有角振動数 \(\omega_n \)に対する無次元安定限界角振動数 \(\omega_0/\omega_n \)の実測値と計算値を図 13 に示す。ただし実測値は“流量増”の場合を示し、“流量増”の場合はほとんどと同様であるので割愛する。図 13 に示すように、計算値は Type 3 の ξ = 0.03 を除いて \(\omega_0/\omega_n \)に関係なくほぼ一定値となる。また、すべての Type における \(\omega_0/\omega_n \) は付加質量などの影響で当然のことながら 1 より小さい。図 13 から、実測値は各 Type ともに \(\omega_0 \) 軸に対して大体平行であり、計算値もほぼ一致している。したがって、Type 1～3において \(\omega_0 \)に関係なく無次元安定限界角振動数 \(\omega_0/\omega_n \) がほぼ一定値となる本解析式は妥当であるといえる。

5. 結 論

並進一自由度の場合の現状すきま流れ振動における本解析式の検証を目的として、構造系の固有振動数を種々に変えて流量変化に対する系の減衰係数比あるいは安定限界流量を実測した。これらの実測値を計算値と比較、検討して得られた結論を以下に示す。

（1）軸方向座標とすきま外筒および中心体壁面テーパ角度を種々に変えた現状すきま流れにおいて、流量と系の減衰係数比に関する本解析式の妥当性を実験によって確認した。

（2）外筒壁面テーパ角度を負とした未流路の場合、流量の増加に伴ってすきま流れが外筒壁面から遊離するため、流路入口に対する出口の面積比についての補正が必要である。

（3）系が動的不安定となる場合、減衰係数比は流量の増加に伴って一度上昇し、下降して負となることを明らかにした。また、安定限界付近での流量に対する減衰係数比の変化率の大きさからは、外筒壁面テーパ角度が負、零、正の未流路すなわち Type 3、1、2の順に流量増加に対して安定から不安定に急激に移行する。

（4）構造系の固有振動数 \(\omega_0 \) と無次元安定限界流量 \(q_n/q_n \)を周囲数上で示すと、\(q_n/q_n \)は \(\omega_0 \)に対して直線的に上昇する。また本解析式によって、不安定振動が消失するときの安定限界流量の定量的な推定が可能である。

（5）\(\omega_0 \)の変化に対する無次元安定限界角振動数 \(\omega_0/\omega_n \)の計算値は \(\omega_0 \)に関係なくほとんど一定値となって、実測値とともに実験的にも一致した。

以上のことからわかるように、関連機器の設計上に定量的な検討を含めて、適切かつ本質的な指針を与えることが本解析法によって可能となった。

終わりにこのぞみ、写真撮影に多大な協力をいただいた早稲田大学大学院生深野学君に感謝する。また、本実験に協力いただいた当時早稲田大学大学院生の塚見英一氏（現、株）東芝）ならびに早稲田大学体液管理室および工学実験室の各位に感謝する。

文献

（1）新井正彰・田島清治. 機論, 57, 356, C1991, 1113, 1121.
（2）福田丈夫・柴山直治. 機論, 55, 511, C1989, 627, 635.
（4）Hajita, K. and Imb, T., Symposium on Flow Induced Vibrations and Noise, ASME, 5(1992), 73, 43.
（6）例産, 林隆・大井邦利. 機論, 56, 532, B(1990), 3183, 3188.